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Bivariate Mixed Poisson Regression Models with Varying Dispersion

George Tzougas1 and Alice Pignatelli di Cerchiara2
1Department of Actuarial Mathematics and Statistics, Heriot-Watt University, Edinburgh, United Kingdom
2Department of Statistics, London School of Economics, London, United Kingdom

The main purpose of this article is to present a new class of bivariate mixed Poisson regression models with varying dispersion
that offers sufficient flexibility for accommodating overdispersion and accounting for the positive correlation between the number
of claims from third-party liability bodily injury and property damage. Maximum likelihood estimation for this family of models
is achieved through an expectation-maximization algorithm that is shown to have a satisfactory performance when three members
of this family, namely, the bivariate negative binomial, bivariate Poisson–inverse Gaussian, and bivariate Poisson–Lognormal dis-
tributions with regression specifications on every parameter are fitted on two-dimensional motor insurance data from a European
motor insurer. The a posteriori, or bonus-malus, premium rates that are determined by these models are calculated via the
expected value and variance principles and are compared to those based only on the a posteriori criteria. Finally, we present an
extension of the proposed approach with varying dispersion by developing a bivariate Normal copula-based mixed Poisson regres-
sion model with varying dispersion and dependence parameters. This approach allows us to consider the influence of individual
and coverage-specific risk factors on the mean, dispersion, and copula parameters when modeling different types of claims from
different types of coverage. For expository purposes, the Normal copula paired with negative binomial distributions for marginals
and regressors on the mean, dispersion, and copula parameters is fitted on a simulated dataset via maximum likelihood.

1. INTRODUCTION
The rapid advent of big data over the last few decades has motivated the need for constructing bivariate (and/or multivari-

ate) regression models that can permit inferences about dependence structures that typically arise in high-dimensional count-
valued data-sets based on explanatory variables. The main classes of models that have been widely applied in various fields of
studies including, but not limited to, marketing, epidemiology, medical science, and finance are the bivariate (and/or multivari-
ate) Poisson and mixed Poisson models and copula-based models. References, include, for example, Jung and Winkelmann
(1993), Munkin and Trivedi (1999), Lee (1999), Gurmu and Elder (2000), Ho and Singer (2001), Kocherlakota and
Kocherlakota (2001), Chib and Winkelmann (2001), Wang (2003), Alf�o and Trovato (2004), Cameron et al. (2004), Karlis and
Meligkotsidou (2005), Zimmer and Trivedi (2006), Park and Lord (2007), Winkelmann (2008), Ma, Kockelman, and Damien
(2008), El-Basyouny and Sayed (2009), Aguero-Valverde and Jovanis (2009), Famoye (2010, 2012), Nikoloulopoulos and
Karlis (2010), Ghitany et al. (2012), Cameron and Trivedi (2013), Nikoloulopoulos (2013a, 2013b), Zhan, Aziz, and Ukkusuri
(2015), and Silva et al. (2017), among many others.

As far as ratemaking in non-life insurance, which is the main focus of this work, is concerned, the interested reader is
referred to the articles by Berm�udez (2009), Berm�udez and Karlis (2011, 2012), and Shi and Valdez (2014b), who introduced
different bivariate (and/or multivariate) regression and copula-based models and also pointed out the existence of a positive
correlation between claim counts of two (and/or multiple) types of claims. Also, Berm�udez and Karlis (2017) were the first to
take the Bayesian view for constructing two experience rating models, which integrate the a priori ratemaking based on bivari-
ate Poisson regression models, extending the existing literature in the bivariate setting, which was confined on ratemaking
models that were derived via the credibility approach. Additionally, it should be noted that recently many alternative
approaches have been proposed in the literature for constructing flexible bivariate (and/or multivariate) insurance claim fre-
quency regression models; see, for instance, Abdallah, Boucher, and Cossette (2016), Berm�udez, Guill�en, and Karlis (2018),

Address correspondence to George Tzougas, Department of Actuarial Mathematics and Statistics, Heriot-Watt University, Edinburgh
EH14 4AS, United Kingdom. E-mail: George.Tzougas@hw.ac.uk

1

North American Actuarial Journal, 0(0), 1–31, 2021
# 2021 Society of Actuaries
ISSN: 1092-0277 print / 2325-0453 online
DOI: 10.1080/10920277.2021.1978850

http://crossmark.crossref.org/dialog/?doi=10.1080/10920277.2021.1978850&domain=pdf&date_stamp=2021-10-28
http://www.tandfonline.com


Pechon, Trufin, and Denuit (2018); Pechon, Denuit, and Trufin (2019, 2021), Bolanc�e and Vernic (2019), Denuit, Guillen, and
Trufin (2019), Fung, Badescu, and Lin (2019a, 2019b), and Bolanc�e, Guillen, and Pitarque (2020).

In this study, we introduce a new class of bivariate mixed Poisson regression models with varying dispersion for modeling
jointly bodily injury and property damage claim frequencies in motor third party liability (MTPL) insurance. This class is
based on a mixing between two marginal Poisson distributions and a unit mean continuous prior, or mixing, distribution that
belongs to a general distribution family including those that do not belong to the natural exponential family and/or are not con-
jugate to the Poisson. Within the adopted framework, both marginal mean parameters and the dispersion parameter are mod-
eled jointly as parametric functions of explanatory variables.

In what follows, we provide a detailed discussion of our contributions, putting special emphasis on the suitability of the pro-
posed family of models when dealing with MTPL claim count data in the bivariate setting, the maximum likelihood (ML) esti-
mation procedure, and practical application aspects in the context of a posteriori ratemaking.

� Firstly, as is well known, the aim of compulsory MTPL insurance is to provide coverage against the bodily injuries and
property damage that may inflicted on third parties during a motor vehicle–related accident. As empirical evidence has
shown, bodily injury claims are less frequent than property damage claims but have the biggest impact on the insurance
company’s claim expenditure. For example, according to a recent report by Insurance Europe (2019), even if in 2013
bodily injury claims only accounted for just under 14% of all MTPL claims recorded by European insurers, they repre-
sented 48.4% of all claims expenditure. Furthermore, on some occasions bodily injuries and property damage can be the
result of the same accident because there are many factors in the MTPL insurance line that can simultaneously affect the
joint dynamics of bodily injury and property damage claims. These are observable risk factors concerning the policyhold-
ers and their vehicles and differences among policyholders that cannot be observed by the actuary and give rise to posi-
tive correlation and overdispersion, which can be attributed to the excess of zeros and/or heavy upper tails (see Shared
1980) in MTPL bodily injury and property damage count data. It is natural to expect that the impact of such risks factors
on the magnitude of the positive dependence between bodily injury and property damage claims could be different. For
instance, this dependence might be stronger in urban regions and, in particular, in large cities than in small cities, and in
the case of young drivers who are more likely to make more claims irrespective of the type. Also, as previous papers
have concluded (see Berm�udez 2009; Berm�udez and Karlis 2017), even if the dependence between different claim types
is not very strong, it must be taken into account in order to refine ratemaking. Additionally, in MTPL insurance the
occurrence of bodily injury and property damage claims is strongly related to the unobserved heterogeneity, such as poli-
cyholders’ driving skills and habits and perception of the highway code, because both claim types are usually under the
control of the driver. Therefore, in order to capture the influence of such factors to a good approximation, it is important
to have all the necessary due diligence in place when constructing a bivariate claim frequency regression model for tak-
ing into account the relationship between MTPL bodily injury and property damage claims and a set of covariates when
pricing the policies. Otherwise, a potential distribution misspecification can result in biased and unreliable parameter esti-
mates, which, in turn may lead to inaccurate ratemaking that can result in nonnegligible financial implications for the
company, because policyholders may switch to competing companies. The family of bivariate mixed Poisson regression
models with varying dispersion we present in this article, can efficiently capture the complex features of two-dimensional
MTPL data. In particular, our model class can accommodate overdispersion and account for positive dependencies
between bivariate responses, which is what we expect from these data, in a very flexible manner because it permits for a
variety of different distributional assumptions for the mixing density, which measures the level of unobservable risk asso-
ciated with each policy and allows every parameter of the bivariate mixed Poisson model to be modeled in terms of
important risk factors for both MTPL claim types, hence resulting in an improved risk evaluation. In order to emphasize
the utility and generality of the proposed family of models, we focus on three of its members, namely, the bivariate nega-
tive binomial (BNB), bivariate Poisson–inverse Gaussian (BPIG), and bivariate Poisson–lognormal (BPLN) models with
regression specifications on both their mean and dispersion parameters.

� Secondly, it is worth noting that the development of ML estimation procedures for joint modeling of all the parameters
of mixed Poisson distributions in terms of covariate information remains a largely uncharted territory even within the
univariate regression analysis context in the majority of both statistical and actuarial applications. In particular, regarding
the statistical setting, this approach has only been explored so far by Rigby and Stasinopoulos (2005) and Barreto-Souza
and Simas (2016). Rigby and Stasinopoulos (2005) proposed the generalized additive models for location, scale, and
shape. The ML estimation of these regression-type models can be carried out using either the RS algorithm (see Rigby
and Stasinopoulos 1996a, 1996b) or the CG algorithm (see Cole and Green 1992). Furthermore, Barreto-Souza and
Simas (2016) used the expectation-maximization (EM) algorithm for fitting a general family of mixed Poisson regression
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models with varying dispersion. In their application they focused on the estimation of the negative binomial (NB) and
Poisson–inverse Gaussian (PIG) regression models with regression structures on both their mean and dispersion parame-
ters. Regarding the actuarial setting, Tzougas and Karlis (2020) implemented the EM algorithm for estimating the param-
eters of mixed exponential regression models with varying dispersion and Tzougas (2020) employed the EM algorithm
for ML estimation in the Poisson–inverse Gamma (PIGA) regression model with varying dispersion. However, using the
ML estimation procedure for the case when all parameters of bivariate mixed Poisson distributions are allowed to vary
through covariates has not yet been addressed in the statistical or actuarial literature. The reason for this is because the
log-likelihood of the mixed Poisson model becomes more complicated in the two-dimensional setting and hence allowing
for regressors on every parameter further increases the computational burden, especially for members of the mixed
Poisson family that have complicated densities that either are expressed in terms of special functions or cannot be written
in a tractable closed form such as, for instance, the BPIG and BPLN models. The main achievement of this article is that
it demonstrates that ML estimation for our class of bivariate mixed Poisson regression models with varying dispersion
can be accomplished via an efficient and easily implementable EM-type algorithm that exploits the latent structure that is
implied by the mixture representation of the bivariate mixed Poisson model and thus it reduces the problem of maximiz-
ing its joint likelihood function to the problem of maximizing the likelihood function of its mixing distribution.

� Thirdly, following the setup of Berm�udez and Karlis (2017), the proposed class of mixed Poisson regression models with
varying dispersion will be used within the Bayesian paradigm for deriving a posteriori ratemaking mechanisms, or
bonus-malus systems. At this point we would like to call attention to the fact that, because the posterior claim frequency
distribution is expressed in terms of both mean parameters and the dispersion parameter of the bivariate mixed Poisson
model, using regressors on every parameter results in better risk-adjusted a posteriori, or bonus-malus, premiums. More
important, because the motor insurance market is highly competitive, our family of models is well justified for use in
practice, because it can enable the actuary to set fair and equitable premiums based on a sound risk measuring basis.
These premiums tailor-made to the risk involved are calculated based on the expected value and variance principles,1

providing the company with useful alternative tariff structures.

Finally, it is important to note that when modelling different types of claims from different types of coverage, such as, for
example, motor and home insurance bundled into a single policy, the mean, dispersion, and dependence components of a
bivariate claim count model may be influenced by different individual and coverage-type risk characteristics. However, in the
case of the bivariate mixed Poisson regression model with varying dispersion, the dispersion parameter can only be modeled
using common covariates for both claim types. Moreover, in such cases, the dependence between the different claim count
response variables may not necessarily be positive. Therefore, it is interesting to extend the proposed modeling framework by
pairing a bivariate Normal copula with a dependence parameter that can vary through covariates with mixed Poisson regression
models with varying dispersion. Under this general approach, in addition to the mean parameters, the dispersion and copula
parameters of the model can vary through covariate information regarding different coverage types and the policyholders. For
demonstration purposes, the bivariate Normal copula-based NB regression model with varying dispersion and dependence
parameters is fitted on a simulated data set using ML estimation.

The remainder of this article proceeds as follows. In Section 2 we provide an in depth description of the proposed class of
bivariate mixed Poisson regression models with varying dispersion. Also, we derive the joint probability mass function (jpmf)
of the BNB, BPIG, and BPLN regression models with varying dispersion. Section 3 describes the ML estimation via the EM
algorithm. Furthermore, we consider detailed EM algorithms for the BNB, BPIG, and BPLN regression models with varying
dispersion. In Section 4 we calculate the a posteriori premiums using the expected value and variance principles. Section 5
presents the derivation of the bivariate Normal copula-based mixed Poisson regression model with varying dispersion and
dependence parameters. In Section 6 the BNB, BPIG, and BPLN models are fitted on a real MTPL dataset. Also, the a posteri-
ori premiums determined by these models are computed. Additionally, the bivariate Normal copula-based NB regression
model with varying dispersion and dependence parameters is fitted on a simulated data set. Finally, concluding remarks are
given in Section 7.

1Note that Lemaire (1995), Heilmann (1989), G�omez-D�eniz, V�azquez Polo, and Bastida (2000), and G�omez-D�eniz et al. (2002) used the variance
principle for deriving bonus-malus systems in the univariate context based only on the a posteriori criteria, whereas Tzougas, Vrontos, and Frangos (2018)
proposed its use for developing such sytems based on both the a priori and the a posteriori criteria. The variance is an important risk measure and the
difference in the bonus-malus premiums that it implies can act as a cushion against adverse experience. However, the use of the variance principle for
computing bonus-malus premiums in a way that takes into consideration the positive correlation between MTPL bodily injury and property damage claims
has not yet been proposed and thus this work expands on this setup as well.
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2. THE BIVARIATE MIXED POISSON REGRESSION MODEL WITH VARYING DISPERSION
The general class of bivariate mixed Poisson regression models with varying dispersion that we consider in this article can

be described as follows.
Assume that the individual claim frequencies Ki, j, where i¼ 1 denotes the MTPL bodily injury claims and i¼ 2 denotes the

MTPL property damage claims, arising from a policyholder j, j ¼ 1, :::, n, are independent per j and consider that given the
random variables Zj > 0, Ki, jjZj per claim type i¼ 1, 2, are distributed according to a Poisson distribution with probability
mass function (pmf) given by

f ki, jjzj
� � ¼ exp �ðli, jzjÞ

� �ðli, jzjÞki, j
ki, j!

, (1)

for ki, j ¼ 0, 1, 2, 3, :::, where li, j>0, with mean and variance Eðki, jjzjÞ ¼ li, jzj and Varðki, jjzjÞ ¼ li, jzj:
Furthermore, suppose that Zj are random variables from a continuous and at least twice-differentiable mixing distribution

with probability density function (pdf) gðzj; rjÞ, where we assume that EðZjÞ ¼ 1 because this ensures that the model is identi-
fiable and where rj>0 is the dispersion parameter.

Therefore, considering the previous assumptions, we can easily see that the unconditional distribution of Ki, j is a bivariate
mixed Poisson distribution with joint probability mass function (jpmf) given by

f k1, j, k2, jð Þ ¼
ð1
0

Y2
i¼1

f ki, jjzj
� �

g zj; rjð Þdzj: (2)

To allow the two mean parameters and the dispersion parameter to be modeled in terms of explanatory variables with para-
metric linear functional forms we consider that

l1, j ¼ exp ðx1, jTb1Þ (3)

l2, j ¼ exp ðx2, jTb2Þ (4)

rj ¼ exp ðx3, jTb3Þ, (5)

where x1, j, x2, j, and x3, j are vectors of covariates with dimensions p1 � 1, p2 � 1, and p3 � 1, respectively, with
ðb1, 1, :::,b1, p1ÞT , ðb2, 1, :::,b2, p2ÞT , and ðb3, 1, :::,b3, p3ÞT the corresponding parameter vectors and where it is assumed that the
matrices X1, X2, and X3, with rows given by x1, i, x2, i, and x3, i respectively, are of full rank.

Finally, the following properties associated with the proposed bivariate mixed Poisson regression model with varying dis-
persion ensure its flexibility in the context of MTPL insurance:

1. The marginal distribution of Ki, j, for i¼ 1, 2, is the same mixed Poisson distribution as its bivariate counterpart. Also,
the mean and the variance of Ki, j are

E Ki, jð Þ ¼ li, j (6)

and

Var Ki, jð Þ ¼ li, j 1þ li, jVarðZjÞ
� �

: (7)

2. The covariance (Cov) between K1, j and K2, j is given by

Cov K1, j,K2, jð Þ ¼ l1, jl2, jVarðZjÞ i ¼ 1 6¼ i ¼ 2: (8)
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3. The correlation (Corr) between K1, j and K2, j is given by

Corr K1, j,K2, jð Þ ¼
VarðZjÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffil1, jl2, j

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ l1, jVarðZjÞÞð1þ l2, jVarðZjÞÞ

q : (9)

4. The generalized variance ratio (GVR) between a bivariate mixed Poisson model with varying dispersion––that is,
Ki, j�Poissonðli, jzjÞ––with Zj�gðzj; rjÞ, which is the pdf of the mixing density, and a simple Poisson model––that is,
Yi, j�Poissonðli, jÞ––is given by

GVR ¼
P2

i¼1Var Ki, jð Þ þ 2
P

i<l Cov Ki, j,Kl, jð ÞP2
i¼1Var Yi, jð Þ

¼ 1þ VarðZjÞ
X2
i¼1

li, j: (10)

As it can be seen from Equations (9) and (10), CorrðK1, j,K2, jÞ>0 and GVR > 1. Also, the GVR increases as the variance of
the mixing distribution increases. Thus, as was previously mentioned, the bivariate mixed Poisson regression model allows for
the positive correlation between the MTPL bodily injury and property damage claims and accommodates overdispersion.

In what follows, different bivariate mixed Poisson distributions with regression structures on every parameter are used to
describe the behavior of the number of bodily injury and property damage claims as a function of the explanatory variables
including the BNB, BPIG, and BPLN distributions.

2.1. BNB Regression Model with Varying Dispersion
Let Zj follow a Gamma distribution with a pdf

gðzj; rjÞ ¼
exp �rjzj½ �rrjj

CðrjÞ z
rj�1
j , (11)

where rj>0, with mean and variance

EðZjÞ ¼ 1 (12)

and

VarðZjÞ ¼ 1=rj, (13)

for j ¼ 1, :::, n:
Thus, based on Equations (1) and (11) it is easy to see that the resulting distribution is the BNB distribution with jpmf

f ðk1, j, k2, jÞ ¼ Cðrj þ
P2

i¼1ki, jÞ
CðrjÞ

Q2
i¼1

ki, j!

r
rj
j

Q2
i¼1

ðli, jÞki, j

ðrj þ li, jÞrjþ
P2

i¼1
ki, j

: (14)

2.2. BPIG Regression Model with Varying Dispersion
Let Zj follow an Inverse Gaussian distribution with a pdf of the form

gðzj; rjÞ ¼ rjffiffiffiffiffiffi
2p

p z�3=2
j exp r2j�

r2j
2

1
zj
þ zj

� �" #
, (15)

where rj>0, with mean and variance
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EðZjÞ ¼ 1 (16)

and

VarðZjÞ ¼ 1=r2j , (17)

for j ¼ 1, :::, n:
Therefore, considering the assumptions in Equations (1) and (15) it can be verified that the resulting distribution is the

BPIG distribution with jpmf

f ðk1, j, k2, jÞ ¼
2rj exp ðr2j Þffiffiffiffiffiffi

2p
p KP2

i¼1
ki, j�1

2

ðrjDjÞ
	 rj
Dj


P2

i¼1
ki, j�1

2
Y2
i¼1

lki, ji, j

ki, j!
, (18)

where Dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j þ 2

P2
i¼1 li, j

q
and K�ðxÞ denotes the modified Bessel function of the third kind of order � and argu-

ment x.

2.3. BPLN Regression Model with Varying Dispersion
Let Zj follow an Lognormal distribution with a pdf of the form

gðzj; rjÞ ¼
exp � ð log ðzjÞþr2j =2Þ2

2r2j

� �
ffiffiffiffiffiffi
2p

p
rjzj

, (19)

where rj>0, with mean and variance

EðZjÞ ¼ 1 (20)

and

VarðZjÞ ¼ exp ðr2j Þ�1, (21)

for j ¼ 1, :::, n:
Thus, based on Equations (1) and (19) it is easy to see that the resulting distribution is the BPLN distribution with jpmf

f ðk1, j, k2, jÞ ¼
ð1
0

Y2
i¼1

exp �ðli, jzjÞ
� �ðli, jzjÞki, j

ki, j!

exp � ð log ðzjÞþr2j =2Þ2
2r2j

� �
ffiffiffiffiffiffi
2p

p
rjzj

dzj, (22)

which could not be written in closed form and hence numerical integration is required.

3. THE EM ALGORITHM
In this section we describe how the EM algorithm (see Dempster, Laird, and Rubin 1977; McLachlan and Krishnan 2007)

can be employed for facilitating ML estimation of the parameters of the bivariate mixed Poisson regression model for marginal
means and dispersion described in Section 2.

Let ðk1, j, k2, j, x1, j, x2, j, x3, jÞ, j ¼ 1, :::, n, be a sample of independent observations, where K1, j and K2, j are the response vari-
ables and x1, j, x2, j, and x3, j are the vectors of covariate information with dimensions p1 � 1, p2 � 1, and p3 � 1, respectively.
Also, suppose that the data are produced according to the bivariate mixed Poisson model. Then, the log-likelihood of the model
can be written as
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lðhÞ ¼
Xn
i¼1

log f k1, j, k2, jð Þð Þ, (23)

where h ¼ ðb1T ,b2T ,b3TÞT is the vector of the parameters and where f ðk1, j, k2, jÞ is the jpmf of the bivariate mixed Poisson
model, which is given by Equation (2).

Direct maximization of Equation (23) with respect to the vector of parameters h is cumbersome because the log-
likelihood of the bivariate mixed Poisson model is not usually tractable. Moreover, when both mean parameters and
the dispersion parameter are modeled as functions of explanatory variables, this raises additional computa-
tional challenges.

Fortunately, ML estimation can be accomplished relatively easily via an EM-type algorithm that is specifically tailored to
ML estimation for univariate and bivariate (and/or multivariate) mixed Poisson models (see, for instance, Karlis 2001, 2005;
Ghitany et al. 2012; Barreto-Souza and Simas 2016; Tzougas 2020) because their stochastic mixture representation involving a
nonobservable random variable, denoted by Zj herein, can be considered to produce missing data. In our case, by augmentation
of the unobserved Zj one can write the complete log-likelihood as follows:

lcðhÞ ¼
X2
i¼1

Xn
j¼1

�li, jzj þ ki, j log li, jzjð Þ � log ki, j!
� �h i

þ
Xn
j¼1

log g zj; rjð Þð Þ, (24)

for i¼ 1, 2 and j ¼ 1, :::, n, where gðzj; rjÞ is the pdf of the mixing distribution and where li, j and rj are given by Equations
(3), (4) and (5), respectively.

The E- and the M-steps of our EM-type algorithm procedure for the bivariate mixed Poisson regression model with varying
dispersion are described below, including a few comments for each step.

� E-Step:
The Q-function, which is the conditional expectation of the complete data log-likelihood in Equation (24), is calculated
in a general way to elucidate its features for our general class of bivariate mixed Poisson regression models with varying
dispersion

Q h; hðrÞ
� �

� Ezj lcðhÞjk1, j, k2, j; hðrÞ
	 


/

/
X2
i¼1

Xn
j¼1

�li, jEzj zjjki, j; hðrÞ
h i

þ ki, j log li, jð Þ
h i

þ
Xn
j¼1

Ezj log g zj; r
ðrÞ
j

	 
	 
h i
,

(25)

where hðrÞ is the estimate of h at the rth iteration in the E-step of our EM algorithm. Then, compute the pseudo-values
wj ¼ Ezj zjjki, j; hðrÞ

h i
and kk, j ¼ Ezj skðzjÞ ki, j; hðrÞ




 i
,

�
for i¼ 1, 2, j ¼ 1, ::, n and k ¼ 1, ::::, �, where skð:Þ are certain func-

tions2 that are involved in the terms needed for maximizing the part of the Q-function that corresponds to the conditional
expectation of the log-likelihood of gðzj; rjÞ:

� M-Step:
Using the pseudo-values wj and xk, j from the E-step and the Newton-Raphson algorithm three times,3 find the maximum
global point hðrþ1Þ of the Q-function; that is, obtain the updated estimates b1

ðrþ1Þ, b2ðrþ1Þ, and b3
ðrþ1Þ:

2Note that, as it will be demonstrated in what follows, if skðzjÞ is a linear function, then the conditional posterior expectations can be computed in an
easy and accurate way. However, for more complicated functions, for which an exact solution is not available, one can use Taylor approximations, or
numerical approximations, including numerical integration, and/or simulation based approximations.

3Note also that this procedure can be used for every continuous and at least twice-differentiable mixing distribution; that is, similar to those we
consider in this work. Therefore, we provide a complete estimation tool for our class of bivariate mixed Poisson regression models with varying
dispersion. However, for some other mixing distributions, a special iterative scheme or another EM algorithm inside the M-step may be more appropriate.
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� Firstly, differentiating the Q-function with respect to b1 gives

h1 b1ð Þ ¼ @Q h; hðrÞ
� �
@b1, l

¼
Xn
j¼1

k1, j � lðrÞ1, jwj

	 

x1, j, l (26)

and

H1 b1ð Þ ¼ @2Q h; hðrÞ
� �

@b1, l@b
T
1, l

¼
Xn
j¼1

�lðrÞ1, jwj

	 

x1, j, lx

T
1, j, l ¼ XT

1W1X1, (27)

for j ¼ 1, :::, n and l ¼ 1, :::, p1 and where W1 ¼ diagf�lðrÞ1, jwjg:
Then, the iterative procedure for the Newton-Raphson algorithm for b1 is as follows:

b1
rþ1ð Þ � b1

ðrÞ� H1 b1
ðrÞ� �� ��1

h1 b1
ðrÞ� �

: (28)

� Secondly, differentiating the Q-function with respect to b2 gives

h2 b2ð Þ ¼ @Q h; hðrÞ
� �
@b2, l

¼
Xn
j¼1

k2, j � lðrÞ2, jwj

	 

x2, j, (29)

and

H2 b2ð Þ ¼ @2Q h; hðrÞ
� �

@b2, l@b
T
2, l

¼
Xn
j¼1

�lðrÞ2, jwj

	 

x2, j, lx

T
2, j, l ¼ XT

2W2X2, (30)

for j ¼ 1, :::, n and l ¼ 1, :::, p2 and where W2 ¼ diagf�lðrÞ2, jwjg:
Then, the iterative procedure for the Newton-Raphson algorithm for b2 is as follows:

b2
rþ1ð Þ � b2

ðrÞ� H2 b2
ðrÞ� �� ��1

h2 b2
ðrÞ� �

: (31)

� Thirdly, differentiating the Q-function with respect to b3 gives

h3 b3ð Þ ¼ @Q h; hðrÞ
� �
@b3, l

¼
Xn
j¼1

@Ezj log g zj; r
ðrÞ
j

	 
	 
h i
@b3, l

(32)

and

H3 b3ð Þ ¼ @2Q h; hðrÞ
� �

@b3, l@b
T
3, j

¼
Xn
j¼1

@2
Ezj log g zj; r

ðrÞ
j

	 
	 
h i
@b3, l@b

T
3, l

, (33)

where for calculating h3ðb3Þ and H3ðb3Þ one needs to use the pseudo-values xk, j for j ¼ 1, ::, n and k ¼ 1, ::::, � because in
this case the maximization of the Q-function reduces to the maximization of the conditional expectation of the log-likeli-
hood of gðzj; rjÞ:
Then, the Newton-Raphson iterative algorithm for b3 is as follows:
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b3
rþ1ð Þ � b3

ðrÞ� H3 b3
ðrÞ� �� ��1

h3 b3
ðrÞ� �

, (34)

for j ¼ 1, ::, n and l ¼ 1, :::, p3:
� Finally, iterate between the E- and the M-steps until some convergence criterion is satisfied; for example,

l rþ1ð Þ�lðrÞ

lðrÞ










<tol, (35)

where lðrÞ is the value of the log-likelihood after the r th iteration and where tol is a small number usually of the form
10�m, where m 2 Z: If this stopping criterion that refers to the progress of the likelihood function––that is, its conver-
gence––is satisfied, the EM algorithm stops iterating and the estimate of h is hðrþ1Þ: Otherwise, h is updated by hðrþ1Þ

and the algorithm goes back to the E-step.
� Note that when the regression specifications for both mean parameters and the dispersion parameter of the model are lim-

ited to the constants b1, 0, b2, 0, and b3, 0, this EM-type algorithm can be employed for the ML estimation of the univari-
ate, without regression components, model.

In what follows, we describe in detail the E- and the M-steps of our EM-type algorithm for the BNB, BPIG, and BPLN regres-
sion models with varying dispersion.

3.1. BNB Regression Model with Varying Dispersion
In the case of the Gamma mixing distribution with pdf given by Equation (11) we have that the posterior distribution of

ZjjKi, j; h is a Gamma with parameters rj þ
P2

i¼1 ki, j and rj þ
P2

i¼1 li, j, for i ¼ 1, :::, n: Then, the EM algorithm is as follows:

� E-Step:
Calculate for all j ¼ 1, ::, n,

wj ¼ Ezj zjjki, j; hðrÞ
h i

¼ rðrÞj þP2
i¼1ki, j

rðrÞj þP2
i¼1l

ðrÞ
i, j

(36)

and

xj ¼ Ezj log zjð Þ ki, j; hðrÞ



 i

¼ W rðrÞj þ
X2
i¼1

ki, j

 !
� log rðrÞj þ

X2
i¼1

lðrÞi, j

 !
,

"
(37)

where Wð�Þ is the digamma function and where lðrÞ1, j ¼ exp ðx1, jTb1ðrÞÞ, lðrÞ2, j ¼ exp ðx2, jTb2ðrÞÞ and rðrÞj ¼ exp ðx3, jTb3ðrÞÞ
are the estimates obtained after rth iteration.

� M-Step:
� Update the regression parameters b1 and b2 using the pseudo-values wj, which are given by Equation (36), and the

Newton-Raphson algorithms in Equations (26), (27), and (28) and Equations (29), (30), and (31), respectively.
� Update the regression parameters b3 using the pseudo-values wj and xj, which are given by Equations (36) and (37)

respectively, and the Newton-Raphson algorithm which, in the case of the Gamma mixing distribution is as follows:

h3 b3ð Þ ¼ rðrÞj log rðrÞj

	 

�W rðrÞj

	 

� wj þ xj þ 1

h i
x3, j, l, (38)

H3 b3ð Þ ¼
Xn
j¼1

rðrÞj log rðrÞj

	 

�W rðrÞj

	 

� wj þ xj�W3 rðrÞj

	 

rðrÞj þ 2

h i
x3, j, lx

T
3, j, l

¼ XT
3W3X3,

(39)

for j ¼ 1, ::, n and l ¼ 1, :::, p3, where W3ð:Þ is the trigamma function and where
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W3 ¼ diagfrðrÞj log rðrÞj

	 

�rðrÞj W rðrÞj

	 

�rðrÞj wj þ rðrÞj xj�W3 rðrÞj

	 

r2j
	 
ðrÞ þ 2rðrÞj g:

Then, we can obtain the updated estimates of b3
ðrÞ using Equation (34).

3.2. BPIG Regression Model with Varying Dispersion
In the case of the inverse Gaussian mixing distribution with pdf given by Equation (15) we have that the posterior distribution
of ZjjKi, j; h is a generalized inverse gaussian distribution with pdf

g zjjki, j; h
� � ¼

wj

vj

	 
�i
2K�j wjvj

� � z�i�1
j exp � 1

2

v2j
zj
þ w2

j zj

 !" #
, (40)

where wj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j þ 2

P2
i¼1 li, j

q
>0, vi ¼ rj>0, �j ¼

P2
i¼1 ki, j� 1

2 2 R for j ¼ 1, :::, n: Then the EM algorithm is as follows:

� E-Step:
Calculate for all j ¼ 1, ::, n,

wj ¼ Ezj zjjki, j; hðrÞ
h i

¼ rðrÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j
	 
ðrÞ þ 2

P2
i¼1l

ðrÞ
i, j

r KP2

i¼1
ki, jþ1

2

rðrÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j
	 
ðrÞ þ 2

P2
i¼1l

ðrÞ
i, j

r !

KP2

i¼1
ki, j�1

2

rðrÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j
	 
ðrÞ þ 2

P2
i¼1l

ðrÞ
i, j

r ! (41)

and

xj ¼ Ezj
1
zj
jki, j; hðrÞ

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j
	 
ðrÞ þ 2

P2
i¼1l

ðrÞ
i, j

r
rðrÞj

KP2

i¼1
ki, j�3

2

rðrÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j
	 
ðrÞ þ 2

P2
i¼1l

ðrÞ
i, j

r !

KP2

i¼1
ki, j�1

2

rðrÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j
	 
ðrÞ þ 2

P2
i¼1l

ðrÞ
i, j

r ! , (42)

where lðrÞ1, j ¼ exp ðx1, jTb1ðrÞÞ, lðrÞ2, j ¼ exp ðx2, jTb2ðrÞÞ, and rðrÞj ¼ exp ðx3, jTb3ðrÞÞ are the estimates obtained after
rth iteration.

� M-Step:
� Update the regression parameters b1 and b2 using the pseudo-values wj, which are given by Equation (41), and the

Newton-Raphson algorithms in Equations (26), (27), and (28) and Equations (29), (30), and (31), respectively.
� Update the regression parameters b3 using the pseudo-values wj and xj, which are given by Equations (41) and (42),

respectively, and the Newton-Raphson algorithm, which, in the case of the inverse Gaussian mixing distribution, is as
follows

h3 b3ð Þ ¼ 2 r2j
	 
ðrÞ � wj r2j

	 
ðrÞ � xj r2j
	 
ðrÞ þ 1

� �
x3, j, l, (43)

H3 b3ð Þ ¼
Xn
j¼1

4 r2j
	 
ðrÞ � 2wj r2j

	 
ðrÞ � 2xj r2j
	 
ðrÞ� �

x3, j, lx
T
3, j, l

¼ XT
3W3X3,

(44)

for j ¼ 1, ::, n and l ¼ 1, :::, p3, where

W3 ¼ diag 4 r2j
	 
ðrÞ�2wj r2j

	 
ðrÞ�2xj r2j
	 
ðrÞ� �

:
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Then, we can obtain the updated estimates of b3
ðrÞ using Equation (34).

3.3. BPLN Regression Model with Varying Dispersion
The EM algorithm can also be employed to find the ML estimates of the BPLN model defined in Equation (22). In this case,
the complete data log-likelihood takes the form

lcðhÞ ¼
X2
i¼1

Xn
j¼1

�li, jzj þ ki, j log li, jzjð Þ � log ki, j!
� �h i

þ
Xn
j¼1

� 1
2
log 2pð Þ � log rjð Þ � log zjð Þ �

log zjð Þ þ r2j
2

	 
2
2r2j

2
4

3
5
,

(45)

for i¼ 1, 2 and j ¼ 1, :::, n: Thus, the expectations needed for the M-step are Ezj zjjki, j; hðrÞ
h i

and Ezj ð log ðzjÞÞ2jki, j; hðrÞ
h i

:
Therefore, the algorithm can be written as follows:

� E-Step:
Calculate for all j ¼ 1, ::, n,

wj ¼ Ezj zjjki, j; hðrÞ
h i

¼

Ð1
0 zj

Q2
i¼1

exp �lðrÞi, j zj
� �

lðrÞi, j zj
� �ki, j

ki, j!

exp � log zjð Þþ
r2
jð ÞðrÞ
2

	 
2

2 r2
jð ÞðrÞ

2
4

3
5

ffiffiffiffi
2p

p
rðrÞj zj

dzj

Ð1
0

Q2
i¼1

exp �lðrÞi, j zj
� �

lðrÞi, j zj
� �ki, j

ki, j!

exp � log zjð Þþ
r2
jð ÞðrÞ
2

	 
2

2 r2
jð ÞðrÞ

2
4

3
5

ffiffiffiffi
2p

p
rðrÞj zj

dzj

(46)

and

xj ¼ Ezj log zjð Þ
� �2jki, j; hðrÞh i

¼

Ð1
0 log zjð Þ
� �2Y2

i¼1

exp �lðrÞi, j zj
h i

lðrÞi, j zj
	 
ki, j

ki, j!

exp �
log zjð Þ þ r2jð ÞðrÞ

2

� �2

2 r2j
	 
ðrÞ

2
6664

3
7775

ffiffiffiffiffiffi
2p

p
rðrÞj zj

dzj

Ð1
0

Y2
i¼1

exp �lðrÞi, j zj
h i

lðrÞi, j zj
	 
ki, j

ki, j!

exp �
log zjð Þ þ

r2jð ÞðrÞ
2

� �2

2 r2j
	 
ðrÞ

2
6664

3
7775

ffiffiffiffiffiffi
2p

p
rðrÞj zj

dzj

,
(47)

where lðrÞ1, j ¼ exp ðx1, jTb1ðrÞÞ, lðrÞ2, j ¼ exp ðx2, jTb2ðrÞÞ, and rðrÞj ¼ exp ðx3, jTb3ðrÞÞ are the estimates obtained after rth iter-
ation. Note that the expectations in Equations (46) and (47) do not have closed-form expressions and thus have to be
evaluated numerically. Alternatively, a Monte Carlo approach is also possible using a rejection algorithm. The latter case
leads to variants of the EM algorithm such as the Monte Carlo EM algorithm (see, for instance Booth and Hobert 1999;
Booth, Hobert, and Jank 2001; Karlis 2001, 2005), which do not require knowledge of the jpmf f ðk1, j, k2, jÞ, but it suffi-
ces to be able to simulate from the posterior density gðzjjki, j; hÞ:
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� M-Step:
Update the regression parameters b1 and b2 using the pseudo-values wj, which are given by Equation (46), and the
Newton-Raphson algorithms in Equations (26), (27), (28) and Equations (29), (30), and (31), respectively.
� Update the regression parameters b3 using the pseudo-values xj, which are given by Equation (47) and the

Newton-Raphson algorithm, which, in the case of the Lognormal mixing distribution, is as follows:

h3 b3ð Þ ¼ xj

r2j
	 
ðrÞ � r2j

	 
ðrÞ
4

� 1

2
664

3
775x3, j, l, (48)

H3 b3ð Þ ¼
Xn
j¼1

�2xj

r2j
	 
ðrÞ � r2j

	 
ðrÞ
2

2
664

3
775x3, j, lxT3, j, l

¼ XT
3W3X3,

(49)

for j ¼ 1, ::, n and l ¼ 1, :::, p3, where W3ð:Þ is the trigamma function and where W3 ¼ diagf�2xj

ðr2j ÞðrÞ
� ðr2j ÞðrÞ

2 g: Then, we can
obtain the updated estimates of b3

ðrÞ using Equation (34).

4. CALCULATION OF THE PREMIUMS ACCORDING TO THE EXPECTED VALUE AND VARIANCE PRINCIPLES
Consider the policyholder j, j ¼ 1, :::n, with number of bodily injury and property damage claims k1, j, l and k2, j, l, respectively,
for the year of coverage l, with l ¼ 1, :::, t: Also, assume that, for all the years that the individual j has been registered with the
insurance company, their cumulative number of claims per type i¼ 1, 2 is given by Ki, j ¼

Pt
l¼1 ki, j, l: Then, employing Bayes’

theorem, we can easily compute the posterior distribution of Zj, tþ1 for the period tþ 1 given the observations of the reported
accidents in the preceding t periods and observable characteristics in the preceding tþ 1 periods and the current period. In par-
ticular, the posterior distribution of Zj, tþ1 can be derived as follows:

g zj, tþ1jk1, j, 1, :::, k1, j, t; k2, j, 1, :::, k2, j, t; x1, j, 1, :::, x1, j, tþ1; x2, j, 1, :::, x2, j, tþ1; x3, j, 1, :::, x3, j, tþ1
� �

¼

Yt
l¼1

f k1, j, k2, jjx1, j, x2, j, x3, j, zj
� �

g zj, tþ1; rjð Þ
ð1
0

f k1, j, k2, jjx1, j, x2, j, x3, j, zj
� �

g zj, tþ1; rjð Þdzj, tþ1

, (50)

where f ðk1, j, k2, jjx1, j, x2, j, x3, j, zjÞ is the bivariate Poisson distribution and where gðzj, tþ1; rjÞ is the pdf of the mixing
distribution.

4.1. Expected Value Principle
The a posteriori, or bonus-malus, premiums calculated according to the expected value principle are given by

P1 ¼ ð1þ k1ÞE Zj, tþ1jk1, j, 1, :::, k1, j, t; k2, j, 1, :::, k2, j, t; x1, j, 1, :::, x1, j, tþ1; x2, j, 1, :::, x2, j, tþ1; x3, j, 1, :::, x3, j, tþ1
� �

, (51)

where k1>0 is a risk load and where the expectation in Equation (51) is that of the posterior distribution given by
Equation (50).

� In the case of the BNB model, Equation (50) is a Gamma distribution with parameters rj þ
P2

i¼1 ki, j and rj þPt
l¼1

P2
i¼1 li, j, l, and hence Equation (51) takes the form

P1 ¼ ð1þ k1Þ rj þ
P2

i¼1ki, j

rj þ
Pt

l¼1

P2
i¼1li, j, l

: (52)

� In the case of the BPIG model, Equation (50) is a generalized inverse Gaussian distribution with parametersffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
j þ 2

Pt
l¼1

P2
i¼1 li, j, l

q
, rj, and

P2
i¼1 ki, j� 1

2 and thus Equation (51) is given by
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P1 ¼
ð1þ k1ÞrjKP2

i¼1
ki, jþ1

2

rj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j þ 2

Pt
l¼1

P2
i¼1li, j, l

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j þ 2

Pt
l¼1

P2
i¼1li, j, l

q
KP2

i¼1
ki, j�1

2

rj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j þ 2

Pt
l¼1

P2
i¼1li, j, l

q� � : (53)

� In the case of the BPLN model, the posterior expectation in Equation (51) cannot be calculated in closed form but it can
be computed via numerical integration, which does not require knowledge of the pdf given by Equation (50). Thus, P1

can be calculated without any special effort as

P1 ¼ ð1þ k1Þ
ð1
0
zj, tþ1

Qt
l¼1

Q2
i¼1

exp �ðli, jzjÞ½ �ðli, jzjÞki, j
ki, j!

exp �
ð log ðzj, tþ1Þþr2

j
=2Þ2

2r2
j

� �
ffiffiffiffi
2p

p
rjzj, tþ1

Ð1
0

Q2
i¼1

exp �ðli, jzjÞ½ �ðli, jzjÞki, j
ki, j!

exp �
ð log ðzj, tþ1Þþr2

j
=2Þ2

2r2
j

� �
ffiffiffiffi
2p

p
rjzj, tþ1

dzj, tþ1

dzj, tþ1: (54)

4.2. Variance Principle
The a posteriori, or bonus-malus, premiums calculated according to the variance principle are given by

P2 ¼ ð1þ k2ÞE Zj, tþ1jk1, j, 1, :::, k1, j, t; k2, j, 1, :::, k2, j, t; x1, j, 1, :::, x1, j, tþ1; x2, j, 1, :::, x2, j, tþ1; x3, j, 1, :::, x3, j, tþ1
� �

þ k2 Var Zj, tþ1jk1, j, 1, :::, k1, j, t; k2, j, 1, :::, k2, j, t; x1, j, 1, :::, x1, j, tþ1; x2, j, 1, :::, x2, j, tþ1; x3, j, 1, :::, x3, j, tþ1
� �� �

,
(55)

where k2>0 is a risk load and where the expectation and the variance in Equation (55) are those of the posterior distribution
in Equation (50).

� In the case of the BNB model, using the result in Equation (52), Equation (55) becomes

P2 ¼ ð1þ k2Þ rj þ
P2

i¼1ki, j

rj þ
Pt

l¼1

P2
i¼1li, j, l

þ k2
rj þ

P2
i¼1ki, j

ðrj þ
Pt

l¼1

P2
i¼1li, j, lÞ2

: (56)

� In the case of the BPIG model, using the result in Equation (53), Equation (55) becomes

P2 ¼
ð1þ k2ÞrjKX2

i¼1
ki, j þ 1

2

rj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j þ 2

Xt

l¼1

X2

i¼1
li, j, l

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j þ 2

Xt

l¼1

X2

i¼1
li, j, l

q
KX2

i¼1
ki, j � 1

2

rj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j þ 2

Xt

l¼1

X2

i¼1
li, j, l

q� �

þ k2
r2j

r2j þ 2
Xt

l¼1

X2

i¼1
li, j, l

0
@

1
A

KX2

i¼1
ki, j þ 3

2

rj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j þ 2

Xt

l¼1

X2

i¼1
li, j, l

q� �

KX2

i¼1
ki, j � 1

2

rj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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(57)

� In the case of the BPLN model, the posterior mean and the posterior variance in Equation (55) cannot be calculated in
closed form. However, both can be calculated based on numerical integration, which does not rely on knowledge of the
pdf given by Equation (50), and hence P2 can be easily computed as:
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(58)

5. THE BIVARIATE NORMAL COPULA-BASED MIXED POISSON REGRESSION MODEL WITH VARYING
DISPERSION AND DEPENDENCE PARAMETERS
This section describes the derivation of the bivariate Normal copula-based mixed Poisson regression model with varying dis-
persion and dependence parameters.

As is well known, a bivariate copula Chðu1, u2Þ is a cumulative distribution function (cdf) with uniform marginals and h is
the copula parameter. A bivariate count distribution can be derived by pairing a continuous copula distribution with two dis-
crete margins. The copula function can fully specify the dependence structure, which can be both positive and negative, separ-
ately from the marginals; see, for instance, Joe (1997). Furthermore, a large number of different copula families have been
proposed in the literature. For a detailed description of copulas, including inference procedures, one can refer to Denuit et al.
(2006). Additionally, regarding copula-based count regression models4 one can see, for instance, Lee (1999), Cameron,
Trivedi, and Zimmer (2004), Nikoloulopoulos and Karlis (2009, 2010), and Nikoloulopoulos (2013a, 2013b, 2016).

Let ðK1, j,K2, jÞ and ðk1, j, k2, jÞ be the vector of claim frequencies for two types of claims and its corresponding realizations,
for j ¼ 1, :::, n: Also, consider that Ki, jjZj, per claim type i¼ 1, 2, is distributed according to a Poisson distribution with pmf
given by Equation (1), where Zj is a continuous random variable with pdf giðzj; ri, jÞ, which is defined on R

þ, and has a unit
mean and ri, j>0: Depending on the choice of giðzj; ri, jÞ, the unconditional distributions of K1, j and K2, j are mixed Poisson dis-
tributions with cdfs F1ðK1, j; l1, j; r1, jÞ and F2ðK2, j; l2, j; r2, jÞ: Then, the bivariate distribution Hðk1, j, k2, j; l1, j,r1, j, l2, j, r2, jÞ is
given by ChjðF1ðK1, j; l1, j,r1, jÞ,F2ðK2, j; l2, j,r2, jÞÞ: Thus, using the finite differences of the copula representation of H (see,
for example, Xue-Kun Song 2000), we obtain the jpmf

4It is worth noting that regression specifications for the dispersion parameters of the discrete marginal distributions have not been used in the literature
so far.
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hðk1, j, k2, j; l1, j, r1, j, l2, j,r2, jÞ ¼ ChjðF1ðK1, j; l1, j,r1, jÞ,F2ðK2, j; l2, j,r2, jÞÞ
�ChjðF1ðK1, j � 1; l1, j,r1, jÞ,F2ðK2, j; l2, j,r2, jÞÞ
�ChjðF1ðK1, j; l1, j, r1, jÞ,F2ðK2, j � 1; l2, j,r2, jÞÞ
þ ChjðF1ðK1, j � 1; l1, j, r1, jÞ,F2ðK2, j � 1; l2, j,r2, jÞÞ:

(59)

Here, the dependence among the mixed Poisson marginals is modeled by a Normal copula that, due to its mathematical
tractability, has been widely used for modelling the dependence between different types of claims; see, for example, Shi and
Valdez (2014a). In particular, we consider that

Chjðu1, j, u2, jÞ ¼ UhjðU�1ðu1, jÞ,U�1ðu2, jÞÞ, (60)

where U is a standard Normal cdf, U�1 is the inverse cdf of the standard Normal distribution, with hj 2 ½�1, 1�, and where
ui, j ¼ FiðKi, j; li, j, ri, jÞÞ, for i¼ 1, 2 and j ¼ 1, :::, n:

Under our general approach, the mean, dispersion, and dependence parameters are modeled in terms of explanatory varia-
bles as follows:

l1, j ¼ exp x1, jTb1
� �

, (61)

l2, j ¼ exp x2, jTb2
� �

, (62)

r1, j ¼ exp x3, jTb3
� �

, (63)

r2, j ¼ exp x4, jTb4
� �

, and (64)

hj ¼ 2
p
arctan x5, jTb5

� �
, (65)

where x1, j, x2, j, x3, j, x4, j, and x5, j are vectors of covariates with dimensions p1 � 1, p2 � 1, p3 � 1, p4 � 1, and p5 � 1,
respectively, with ðb1, 1, :::,b1, p1ÞT , ðb2, 1, :::,b2, p2ÞT , ðb3, 1, :::, b3, p3ÞT , ðb4, 1, :::,b4, p4ÞT and ðb5, 1, :::,b5, p5ÞT the corresponding
parameter vectors. Also, the design matrices are denoted as X1, X2, X3, X4, and X5, with x1, i, x2, i, x3, i, x4, i, and x5, i,
respectively, which we assume are of full rank.

6. NUMERICAL ILLUSTRATION
6.1. The MTPL Data

The study is based on a subset of claim frequency data that was randomly selected from a larger pool of MTPL insurance
policies observed during the year 2017 from a major European insurance company. The MTPL insurance cover was activated
when the policyholder was at fault for the cases of causing bodily injury of a person or inflicting damage on a property during
the operation of the motor vehicle identified on the policy. We are interested in modeling the MTPL bodily injury and property
damage claims with their associated claim counts, denoted by K1, j and K2, j, respectively, for j ¼ 1, :::, n: For each policy, the
total number of claims for each type of claim were reported within this yearly period. A claim that was counted as bodily
injury was not counted twice, namely, as property damage as well, and vice versa. In the sample we included only policyhold-
ers with complete records; that is, with availability of all the explanatory variables that affect both K1, j and K2, j: Furthermore,
an exploratory analysis was carried out in order to accurately select the subset of explanatory variables with the highest pre-
dictive power for both K1, j and K2, j: There were n¼ 5186 observations and three explanatory variables that met our criteria.5

Additionally, in light of the heterogeneity that exists within the portfolio, we grouped the levels of each explanatory variable
with respect to similar risk profiles with regard to the MTPL bodily injury and property damage claim frequencies. This is
necessary because it will enable us to achieve ratemaking accuracy and balance homogeneity and sufficiency of the volume of
data in each cell in order to provide credible patterns. Table 1 summarizes the explanatory variables.

5Note that it would be interesting to fit the same models to larger data sets with more available features that could simultaneously affect K1, j and K2, j,
such as age of driver, age of the car, and driving zone, which have been traditionally used in MTPL insurance.
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Table 2 shows the effects of the explanatory variables on the claim counts K1, j and K2, j based on all 5186 observations. The
first column presents the categories for each explanatory variable and the second column shows how many of the 5186 policy-
holders in our sample belong to each category. In the remaining columns of the table we see, per category of each explanatory
variable, the percentage of policies with claim frequencies equal to 0, 1, 	 2 for K1, j and K2, j respectively. For example, the
following observations can be made from Table 2. Firstly, regarding the variable city population (v1) we see that out of the
2203 policyholders who live in a small city (C1), 92.81% have not made any bodily injury claims and 94.68% have not made
any property damage claims. On the other hand, out of the 597 individuals who live in a large city (C3), only 92.34% and
93.46% are claim-free for bodily injury and property damage claims, respectively, meaning that living in a large city seems to
be a risky characteristic. Secondly, as far as the variable number of years that the policyholder has been registered with the
insurance company (v2) is concerned, it seems that the longer a policyholder has been with the company (C2), the riskier it
gets. Finally, in the case of the variable horsepower of the car (v3), we can see that a more powerful car (C3) leads to more
accidents, for both K1, j and K2, j:

In what follows, in order to motivate the BNB, BPIG, and BPLN regression models with varying dispersion, a marginal
analysis for both response variables K1, j and K2, j is carried out. Specifically, in Table 3 we present some standard descriptive
statistics for the claims K1, j and K2, j, as well as the values of Kendall’s s and Spearman’s q correlation coefficients. As
expected, Table 3 shows the existence of positive correlation between k1, j and k2, j as well as their marginal overdispersion,
because the marginal variances exceed the respective means. Thus, the bivariate mixed Poisson model with varying overdisper-
sion is a better choice than the Poisson model, because the latter is not equipped to handle overdispersion.

At this point it should be noted that, as is well known, the range of Kendall’s s and Spearman’s q for discrete random varia-
bles is narrower than ½�1, 1�; see Denuit and Lambert (2005), Mesfioui and Tajar (2005), and Mesfioui, Trufin, and
Zuyderhoff (2021). Also, Nikoloulopoulos and Karlis (2010) and Safari-Katesari, Samadi, and Zaroudi (2020) paired copulas
with discrete marginal distributions to compute the population versions of Kendall’s s and Spearman’s q. Here, as an example,
we combined two marginal Poisson distributions with varying mean parameter l from 1 up to 20 using the Normal copula and

TABLE 1
The Explanatory Variables and Their Description

Categories

Variables C1 C2 C3

City population (v1) 
1,000,000 1,000,001–2,000,000 	2,000,001
Number of years that the policyholder
has been registered with the <5 years >5 years ––

insurance company (v2)
Horsepower of the vehicle (v3) 0–1400 cc 1400–1800 cc 	1800 cc

TABLE 2
Summary Statistics for Claim Frequencies as Classified by the Explanatory Variables

k1 k2

Covariates Total Count ¼ 0 (%) Count ¼ 1 (%) Count 	2 (%) Count ¼ 0 (%) Count ¼ 1 (%) Count	2 (%)

v1 C1 2203 92.81 5.28 1.91 94.68 5.04 0.28
v1 C2 2386 92.98 4.65 2.37 93.76 5.94 0.30
v1 C3 597 92.34 4.86 2.80 93.46 6.35 0.19
v2 C1 4491 93.00 4.68 2.32 94.25 5.48 0.27
v2 C2 695 91.69 6.81 1.50 93.19 6.48 0.33
v3 C1 2372 92.77 5.02 2.21 94.28 5.50 0.22
v3 C2 1815 93.84 3.99 2.17 94.35 5.36 0.29
v3 C3 999 91.14 6.51 2.35 93.27 6.30 0.43
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we assumed that the copula parameter h can vary from -–1 to 1. We observed that for a value of l greater than 10 the values
of Kendall’s s and Spearman’s q stabilize close to 1. Regarding the variability of the population versions of Kendall’s s and
Spearman’s q from lowest to highest attainable values when combining different marginal distributions using alternative cop-
ula functions, the interested reader can refer to all of the previous articles.

Finally, we fit the univariate NB, PIG, and PLN regression models with varying dispersion for claim frequencies using the
univariate version of the EM algorithm presented in Section 2. Additionally, the simple Poisson regression model was fitted
for comparison purposes. The normalized randomized quantile residuals (see Dunn and Smyth 1996) are used as a graphical
tool to help us assess the adequacy of the fit of the competing models for both bodily injury and property damage claim counts
K1, j and K2, j: For these discrete response distributions, the normalized randomized quantile residuals are defined as r̂ j ¼
U�1ðujÞ, where U�1 is the inverse cdf of a standard Normal distribution and where uj is defined as a random value from the
uniform distribution on the interval Fjðvj � 1jhðrþ1ÞÞ,Fjðvjjhðrþ1ÞÞ

h i
, where Fj is the cdf estimated for the jth individual and

where hðrþ1Þ contains all estimated model parameters after the EM algorithm has reached the global maximum and vj is the
corresponding observation. The normalized (random) quantiles for the Poisson, NB, PIG, and PLN models are presented in
Figure 1 per claim type i¼ 1, 2. From Figure 1, we observe that the NB, PIG, and PLN are better assumptions than the
Poisson model, which does not capture the tails of the claim frequency distributions of K1, j and K2, j: In particular, the residuals
of the three mixed Poisson models are close to the diagonal and indicate a good fit to the distributions of both K1, j and K2, j,
whereas the sample quantiles of the Poisson model, due to the equidispersion constraint, near the tail end of the distributions
of both K1, j and K2, j, are significantly higher than the theoretical quantiles.

6.2. Modeling Results
This subsection describes the modeling results of the BNB, BPIG, and BPLN distributions and regression models with vary-

ing dispersion.
The ML estimates of their parameters and the corresponding standard errors in parentheses are presented in Table 4 for the

distributions6 and in Table 5 for the regression models with varying dispersion. Note that in the latter case, for illustrative pur-
poses we considered that the two location parameters l1, j, l2, j and the dispersion parameter rj, j ¼ 1, :::, n, of the aforemen-
tioned models are modeled using all three available explanatory variables. However, it should be noted that for larger datasets
variable selection can start with the examination of the two mean parameters of the bivariate mixed Poisson regression model
with varying dispersion. This can be achieved by adding all available covariates and testing whether the exclusion of each one
lowers the global deviance (DEV), Akaike information criterion (AIC), and Schwartz Bayesian criterion (SBC) values. Then,
after having selected the best predictors for the two mean parameters, we can continue in determining the remaining predictors
by testing which rating variable between those used in the two mean parameters would lead to a further decrease of the DEV,
AIC, and SBC values when inserted in the dispersion parameter of the bivariate claim frequency model with varying disper-
sion. Additionally, if between the same bivariate mixed Poisson distribution with different parameter specifications several
models have similar DEV, AIC, and SBC values, the simpler model can be used in order to avoid overfitting. Therefore, in

TABLE 3
Descriptive Statistics for the Two Responses

K1 K2

Statistic Value Statistic Value

Minimum 0 Minimum 0
Median 0 Median 0
Mean 0.0954 Mean 0.0618
Variance 0.1375 Variance 0.0644
Maximum 4 Maximum 3

Kendall’s s: 0.1760
Spearman’s q: 0.1777

6Note that the mean parameters of the BNB, BPIG, and BPLN distributions are denoted by l1 and l2 and the dispersion parameter is denoted by r.
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such cases, it should be expected that the dispersion parameters of the bivariate mixed Poisson regression model with varying
dispersion may have fewer predictors than the two mean parameters.

As we can see from Table 5, the values of the estimated regression coefficients of the variables v1, v2, and v3 are almost
identical for l1, j and l2, j across all three bivariate mixed Poisson distributions, whereas they differ hugely for the dispersion
parameter rj. Additionally, we observe that the same explanatory variables always have the same effect (positive and/or nega-
tive) on the parameter rj in the case of the BNB and BPIG models but have a different effect for rj in the case of the
BPLN model.

6.3. Model Comparison
In this subsection we compare the fit of the BNB, BPIG, and BPLN distributions/regression models with varying dispersion

based on the classic hypothesis/specification tests DEV, AIC, and SBC. The DEV is given by

FIGURE 1. Normalized Quantiles for the Poisson, NB, PIG, and PLN Regression Models with Varying Dispersion.
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DEV ¼ �2̂lðĥÞ, (66)

with l̂ being the maximum of the log-likelihood and ĥ the vector of estimated parameters of the model. Moreover, the AIC
is defined as

AIC ¼ DEVþ 2� df (67)

and the SBC is given by

SBC ¼ DEVþ log ðnÞ � df , (68)

where df are the degrees of freedom that correspond to the number of fitted parameters in the model and n is the number of
observations in the sample. The values of the DEV, AIC, and SBC for the competing bivariate mixed Poisson distributions/
regression models with varying dispersion are given in Table 6. According to a very well-known rule of thumb, two models
can be considered to be significantly different if the difference in the log-likelihoods exceeds 5, corresponding to a difference
in their respective AIC and SBC values of greater than 10 and 5 respectively; see Anderson and Burnham (2004) and Raftery
(1995). Therefore, in this case we see that the best fitting performances are provided by the BPIG distribution/regression model
with varying dispersion.

TABLE 4
Parameters Estimates and Associated Standard Errors of the Fitted BNB, BPIG, and BPLN Distributions

BNB BPIG BPLN

l 1 l2 l1 l2 l1 l2

0.0954 0.0618 0.0954 0.0618 0.0954 0.0618
(0.0542) (0.0639) (0.0535) (0.0633) (0.0546) (0.0643)

r r r
0.2612 0.4866 1.4072
(0.1037) (0.0554) (0.0448)

TABLE 5
Parameters Estimates and Associated Standard Errors of the Fitted BNB, BPIG, and

BPLN Regression Models with Varying Dispersion for Each Covariate

BNB BPIG BPLN

Variable Coeff. b1 Coeff. b2 Coeff. b3 Coeff. b1 Coeff. b2 Coeff. b3 Coeff. b1 Coeff. b2 Coeff. b3

Intercept –2.3933 –2.9262 –1.1296 –2.3950 –2.9279 –0.5908 –2.3839 –2.9167 0.2380
(0.0981) (0.1121) (0.2126) (0.0997) (0.1010) (0.1418) (0.0898) (0.1374) (0.0474)

v1 C2 0.0524 0.1504 –0.1912 0.0535 0.1518 –0.1157 0.0708 0.1691 0.0905
(0.0238) (0.0711) (0.0940) (0.0232) (0.0698) (0.0564) (0.0329) (0.0808) (0.0436)

v1 C3 0.1556 0.1770 –0.2303 0.1587 0.1793 –0.1364 0.1941 0.2143 0.1223
(0.0798) (0.0938) (0.1268) (0.0804) (0.0939) (0.0732) (0.1003) (0.1149) (0.0685)

v2 C2 0.0452 0.1780 0.3627 0.0465 0.1790 0.1959 0.0348 0.1669 –0.1198
(0.0169) (0.0719) (0.1611) (0.0170) (0.0704) (0.0859) (0.0137) (0.0704) (0.0571)

v3 C2 –0.1216 –0.0203 –0.3144 –0.1203 �0.0190 –0.1769 �0.1000 –0.021 0.1230
(0.0542) (0.0093) (0.1473) (0.0525) (0.0085) (0.0819) (0.0459) (0.0098) (0.0608)

v3 C3 0.1767 0.1712 –0.0883 0.1784 0.1731 –0.0716 0.1934 0.1882 0.0674
(0.0793) (0.0786) (0.0426) (0.0787) (0.0776) (0.0341) (0.0893) (0.0895) (0.0341)
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6.4. Application to Ratemaking
In this subsection, following the current methodology, as presented in Section 4, we calculate the a posteriori, or bonus-

malus, premiums resulting from the three BNB, BPIG, and BPLN distributions/regression models with varying dispersion
using the expected value and the variance principles. The premium rates will be divided by the premium when t ¼ 0––that is,
we calculate the relative premiums––because we are interested in the differences between various classes and the results are
presented so that the premium for a new policyholder is 100. Thus, in what follows, when the expected value principle is used,
note the disappearance of the factor ð1þ k1Þ from Equations (52), (53), and (54). Also, when the variance principle is used,
following, and extending to the bivariate case the framework of Lemaire (1995) and Tzougas et al. (2018), we consider that
k2 ¼ 0:235 in Equations (56), (57), and (58), which corresponds to a safety loading of 25% of the net premium.

Firstly, assuming that the number of individual bodily injury and property damage claims, K1, j and K2, j, respectively, with
j ¼ 1, :::, n, ranges from 0 to 3 and the age of the policy is t¼ 1, t¼ 2, and t¼ 3 years, we computed comparable relative pre-
miums for the three bivariate mixed Poisson distributions. Tables 7 and 8 present the premium rates calculated according to
the expected value and variance principles, respectively.

TABLE 6
Models Comparison Based on Global Deviance, AIC, and SBC

Distributions Regression Models

Model df AIC SBC Model df Global Deviance AIC SBC

BNB 3 5615 5635 BNB 18 4388 4424 4542
BPIG 3 5541 5561 BPIG 18 4249 4285 4403
BPLN 3 5684 5704 BPLN 18 4513 4549 4667

TABLE 7
Comparison of the A Posteriori, or Bonus–Malus, Premium Rates for t ¼ 1, 2, 3,
Bivariate Claim Frequency Distributions under the Expected Value Principle

t¼ 1 t¼ 1 t¼ 1
BNB distribution BPIG distribution BPLN distribution

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 72.69 350.98 629.27 907.56 79.80 256.06 553.66 892.83 81.47 244.10 510.00 847.30
1 350.98 629.27 907.56 1185.85 256.06 553.66 892.83 1240.99 244.10 510.00 847.30 1227.45
2 629.27 907.56 1185.85 1464.14 553.66 892.83 1240.99 1591.52 510.00 847.30 1227.45 1633.51
3 907.56 1185.85 1464.14 1742.43 892.83 1240.99 1591.52 1942.92 847.30 1227.45 1633.51 2056.12

t¼ 2 t¼ 2 t¼ 2
BNB distribution BPIG distribution BPLN distribution

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 57.10 275.69 494.28 712.87 68.35 197.65 411.53 657.85 70.44 193.99 382.91 614.90
1 275.69 494.28 712.87 931.46 197.65 411.53 657.85 912.20 193.99 382.91 614.90 872.58
2 494.28 712.87 931.46 1150.05 411.53 657.85 912.20 1168.82 382.91 614.90 872.58 1145.94
3 712.87 931.46 1150.05 1368.64 657.85 912.20 1168.82 1426.30 614.90 872.58 1145.94 1429.44

t¼ 3 t¼ 3 t¼ 3
BNB distribution BPIG distribution BPLN distribution

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 47.01 226.99 406.97 586.96 60.73 162.83 328.94 521.70 62.81 163.41 310.83 488.29
1 226.99 406.97 586.96 766.94 162.83 328.94 521.70 721.75 163.41 310.83 488.29 683.62
2 406.97 586.96 766.94 946.92 328.94 521.70 721.75 923.98 310.83 488.29 683.62 889.94
3 586.96 766.94 946.92 1126.90 521.70 721.75 923.98 1127.06 488.29 683.62 889.94 1103.44
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Secondly, when both the a posteriori and the a priori criteria––that is the characteristics of the policyholders and their car-
s––are considered, we analyze three risk class profiles that we classify as best, average, and worst according to the values of
the mean claim frequencies l1, j and l2, j, which are calculated using the same set of explanatory variables per claim type i¼ 1,
2 in the case of the BNB, BPIG, and BPLN models, respectively. More specifically, for our data, we characterize the best,
average, and worst profiles as such based on category C1 for all three explanatory variables v1, v2, and v3 in the case of the

TABLE 8
Comparison of the A Posteriori, or Bonus–Malus, Premium Rates for t ¼ 1, 2, 3,

Bivariate Claim Frequency Distributions under the Variance Principle

t¼ 1 t¼ 1 t¼ 1
BNB distribution BPIG distribution BPLN distribution

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 66.48 321.01 575.54 830.07 72.36 261.00 585.67 951.89 74.79 248.08 553.01 953.33
1 321.01 575.54 830.07 1084.61 261.00 585.67 951.89 1325.81 248.08 553.01 953.33 1411.35
2 575.54 830.07 1084.61 1339.14 585.67 951.89 1325.81 1701.58 553.01 953.33 1411.35 1903.99
3 830.07 1084.61 1339.14 1593.67 951.89 1325.81 1701.58 2078.02 953.33 1411.35 1903.99 2418.52

t¼ 2 t¼ 2 t¼ 2
BNB distribution BPIG distribution BPLN distribution

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 49.44 238.71 427.98 617.26 59.00 186.12 399.90 644.15 62.04 182.94 376.80 620.13
1 238.71 427.98 617.26 806.53 186.12 399.90 644.15 895.13 182.94 376.80 620.13 893.03
2 427.98 617.26 806.53 995.80 399.90 644.15 895.13 1147.87 376.80 620.13 893.03 1183.86
3 617.26 806.53 995.80 1185.08 644.15 895.13 1147.87 1401.27 620.13 893.03 1183.86 1486.19

t¼ 3 t¼ 3 t¼ 3
BNB distribution BPIG distribution BPLN distribution

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 39.22 189.39 339.56 489.73 50.89 146.12 303.31 484.57 53.94 147.64 289.72 463.44
1 189.39 339.56 489.73 639.89 146.12 303.31 484.57 671.85 147.64 289.72 463.44 655.99
2 339.56 489.73 639.89 790.06 303.31 484.57 671.85 860.82 289.72 463.44 655.99 860.06
3 489.73 639.89 790.06 940.23 484.57 671.85 860.82 1050.43 463.44 655.99 860.06 1071.59

TABLE 9
Results of the Fitted BNB, BPIG, and BPLN Regression Models with Varying Dispersion for Each Risk Class Profile

Regression model Profile l1, j Profile l2, j Profile rj

Best 0.09132733 Best 0.05359886 Best 0.3231537
BNB Average 0.0891615 Average 0.07294194 Average 0.2801163

Worst 0.133208 Worst 0.09072674 Worst 0.3377262

Best 0.09117268 Best 0.05350929 Best 0.553884
BPIG Average 0.08934053 Average 0.07308735 Average 0.5028316

Worst 0.1338012 Worst 0.09103602 Worst 0.5472224

Best 0.09219446 Best 0.05411198 Best 1.268773
BPLN Average 0.09270516 Average 0.07414734 Average 1.393263

Worst 0.1406319 Worst 0.09563929 Worst 1.360708
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first; category C2 for v1, v2, and v3 in the case of the second; and category C3 for v1 and v3 and C2 for v2 in the case of the
third. Also, the dispersion parameter rj of the BNB, BPIG, and BPLN models is computed for each risk class profile. The
results are shown in Table 9.

From Table 9 we observe that for all three risk profiles small differences lie in the mean values l1, j and l2, j of the BNB,
BPG, and BPLN models. On the contrary, as previously mentioned, more significant differences are noticed across the three
risk profiles in the values of the dispersion parameters rj of the bivariate mixed Poisson models. Due to these discrepancies,
the a posteriori, or bonus-malus, premium rates that will result from the three models by updating their posterior mean and the
posterior variance will be better distinguished under different distributional assumptions. Thus, as was previously mentioned,
the proposed modeling framework leads to a better tariffication than the assumption of a constant dispersion rj.

In what follows, Tables 10, 11, and 12 depict the premiums computed under the expected value principle for the three risk
profiles during the years t¼ 1, t¼ 2, and t¼ 3 respectively. Furthermore, Tables 13, 14, and 15 present the premiums calcu-
lated via the variance principle for the same risk profiles and years of insurance policy.

We make the following observations regarding the results presented in Tables 7, 8, and 10–15.

� Firstly, we see that if the policyholder j has a claim-free year, the premium rates reduce, whereas if they have one or
more claims, the premium rates increase, resulting in bonus or malus, respectively.
� For example, for the case when the expected value principle is used, we observe from Table 7 that a claim-free year

for both types of claims i¼ 1, 2 the policyholder will receive bonuses of 27.31%, 20.20% and 18.53% in year t ¼ 1
in the case of the BNB, BPIG, and BPLN distributions, respectively. Furthermore, the insureds who had k1, j ¼ 2 and
k2, j ¼ 1 claims in year t¼ 1 will have to pay a malus of 807.56%, 792.83%, and 747.30% in the case of the BNB,

TABLE 10
Comparison of the A Posteriori, or Bonus–Malus, Premium Rates for t¼ 1 under the

Expected Value Principle, Bivariate Claim Frequency Regression Models with Varying Dispersion

t¼ 1 t¼ 1 t¼ 1
BNB regression model BPIG regression model BPLN regression model

Best profile Best profile Best profile

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 76.36 312.65 548.94 785.23 82.05 239.47 500.38 800.56 83.78 223.13 451.24 749.12
1 312.65 548.94 785.23 1021.52 239.47 500.38 800.56 1110.36 223.13 451.24 749.12 1093.54
2 548.94 785.23 1021.52 1257.81 500.38 800.56 1110.36 1422.85 451.24 749.12 1093.54 1467.98
3 785.23 1021.52 1257.81 1494.10 800.56 1110.36 1422.85 1736.37 749.12 1093.54 1467.98 1862.30

t¼ 1 t¼ 1 t¼ 1
BNB regression model BPIG regression model BPLN regression model

Average profile Average profile Average profile

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 73.18 334.41 595.64 856.88 80.00 247.48 528.29 849.50 81.26 237.30 489.54 808.55
1 334.41 595.64 856.88 1118.11 247.48 528.29 849.50 1179.87 237.30 489.54 808.55 1167.96
2 595.64 856.88 1118.11 1379.35 528.29 849.50 1179.87 1512.72 489.54 808.55 1167.96 1551.97
3 856.88 1118.11 1379.35 1640.58 849.50 1179.87 1512.72 1846.48 808.55 1167.96 1551.97 1951.77

t¼ 1 t¼ 1 t¼ 1
BNB regression model BPIG regression model BPLN regression model

Worst profile Worst profile Worst profile

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 71.49 283.19 494.88 706.58 79.05 210.99 425.43 674.37 79.41 209.86 408.55 653.84
1 283.19 494.88 706.58 918.27 210.99 425.43 674.37 932.83 209.86 408.55 653.84 927.77
2 494.88 706.58 918.27 1129.97 425.43 674.37 932.83 1194.13 408.55 653.84 927.77 1219.52
3 706.58 918.27 1129.97 1341.66 674.37 932.83 1194.13 1456.54 653.84 927.77 1219.52 1522.90
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BPIG, and BPLN distributions, respectively. Regarding the case with covariates, we see from Table 12 that claim free
individuals per claim-type i¼ 1, 2 in year t¼ 3 will receive bonuses of 48.16%, 36.19%, and 33.69% with the best
profile, 52.37%, 38.99%, and 37.53% with the average profile, and 54.46%, 40.25%, and 40.36% with the worst pro-
file in the case of the BNB, BPIG, and BPLN regression models with varying dispersion, respectively. Additionally,
we see from Table 12 that policyholders who had k1, j ¼ 2 and k2, j ¼ 1 claims in year t¼ 3 will have to pay maluses
of 433.14%, 389.09%, and 346.43% with the best profile, 457.69%, 398.68%, and 366.63% with the average profile.
and 350.02%, 291.05%, and 276.88% with the worst profile in the case of the BNB, BPIG, and BPLN regression
models with varying dispersion, respectively.

� Similarly, for the case when the variance principle is used, we observe from Table 8 that a claim-free individual for
both types of claims i¼ 1, 2 insured will receive a bonus of 60.78%, 49.11%, and 46.06% in year t¼ 3 in the case of
the BNB, BPIG, and BPLN distributions, respectively. Also, individuals who had k1, j ¼ 2 and k2, j ¼ 3 claims in year
t¼ 3 will have to pay a malus of 690.06%, 760.82%, and 760.06% in the case of the BNB, BPIG, and BPLN distribu-
tions, respectively. Regarding the case with covariates, we see from Table 14 that claim-free insureds per claim type
i¼ 1, 2 in year t¼ 2 will receive bonuses of 45.07%, 37.26%, and 34.00% with the best profile, 49.64%, 40.39%, and
37.95% with the average profile, 50.61%, 40.04%, and 39.09% with the worst profile in the case of the BNB, BPIG,
and BPLN regression models with varying dispersion, respectively. Furthermore, we see from Table 14 that policy-
holders who had k1, j ¼ 2 and k2, j ¼ 3 claims in year t¼ 2 will have to pay a malus of 804.86%, 976.28%, and
1013.15% with the best profile; 849.20%, 996.33%, and 1020.00% with the average profile; and 680.60%, 752.92%,
and 756.22% with the worst profile in the case of the BNB, BPIG, and BPLN regression models with varying disper-
sion, respectively.

TABLE 11
Comparison of the A Posteriori, or Bonus–Malus, Premium Rates for t¼ 2 under the

Expected Value Principle, Bivariate Claim Frequency Regression Models with Varying Dispersion

t¼ 2 t¼ 2 t¼ 2
BNB regression model BPIG regression model BPLN regression model

Best profile Best profile Best profile

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 61.76 252.87 443.97 635.08 71.23 189.88 382.67 606.51 73.58 181.78 347.13 554.85
1 252.87 443.97 635.08 826.19 189.88 382.67 606.51 838.91 181.78 347.13 554.85 790.34
2 443.97 635.08 826.19 1017.30 382.67 606.51 838.91 1073.89 347.13 554.85 790.34 1043.81
3 635.08 826.19 1017.30 1208.41 606.51 838.91 1073.89 1309.87 554.85 790.34 1043.81 1309.31

t¼ 2 t¼ 2 t¼ 2
BNB regression model BPIG regression model BPLN regression model

Average profile Average profile Average profile

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 57.70 263.68 469.66 675.64 68.60 191.76 394.00 627.70 70.14 188.56 367.80 587.30
1 263.68 469.66 675.64 881.63 191.76 394.00 627.70 869.56 188.56 367.80 587.30 831.00
2 469.66 675.64 881.63 1087.61 394.00 627.70 869.56 1113.77 367.80 587.30 831.00 1089.59
3 675.64 881.63 1087.61 1293.59 627.70 869.56 1113.77 1358.89 587.30 831.00 1089.59 1357.84

t¼ 2 t¼ 2 t¼ 2
BNB regression model BPIG regression model BPLN regression model

Worst profile Worst profile Worst profile

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 55.64 220.37 385.11 549.85 67.41 163.36 315.66 494.13 67.61 165.48 306.02 474.57
1 220.37 385.11 549.85 714.58 163.36 315.66 494.13 680.83 165.48 306.02 474.57 660.27
2 385.11 549.85 714.58 879.32 315.66 494.13 680.83 870.20 306.02 474.57 660.27 856.74
3 549.85 714.58 879.32 1044.06 494.13 680.83 870.20 1060.64 474.57 660.27 856.74 1060.34
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� Secondly, regarding the premiums resulting from the same bivariate mixed Poisson distribution/regression model with
varying dispersions, we see that
� For the cases without and with covariates, the use of the variance principle results in higher bonuses for claim-free

policyholders than those that are awarded to them using the expected value principle.
� For the case with covariates, as we can see from Tables 10–15, the proposed modeling framework encourages good

driving behavior in two ways:
a. The bonuses that are awarded to claim-free policyholders with higher risk profiles are slightly higher than those that

are awarded to claim-free insureds with lower risk profiles.
b. The maluses that should be paid by policyholders who had at least one bodily injury and/or property damage claim

are slightly lower if they have a higher risk profile.
� Finally, it is worth noting that Tables 10–15 provide a more complete picture to the insurance company than Tables 7

and 8 of when only the a posteriori criteria were considered, because all of the important a priori and a posteriori infor-
mation for the number of bodily injury and property damage claims, K1, j and K2, j respectively, of policyholder j is con-
sidered in order to estimate their risk of having an accident and thus they permit the differentiation of the a posteriori, or
bonus-malus, premiums for various number of bodily injury and property damage claims by updating the posterior mean
and the posterior variance based on all available information on the level of riskiness of this individual.

6.5. The Simulated Data
In this subsection, we demonstrate the flexibility of the copula-based model discussed in Section 5 for taking into account the
effect of policyholder and coverage type covariates on the mean, dispersion, and dependence components.

TABLE 12
Comparison of the A Posteriori, or Bonus–Malus, Premium Rates for t¼ 3 under the

Expected Value Principle, Bivariate Claim Frequency Regression Models with Varying Dispersion

t¼ 3 t¼ 3 t¼ 3
BNB regression model BPIG regression model BPLN regression model

Best profile Best profile Best profile

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 51.84 212.28 372.71 533.14 63.81 159.01 311.21 489.09 66.31 155.60 286.21 446.43
1 212.28 372.71 533.14 693.57 159.01 311.21 489.09 674.74 155.60 286.21 446.43 625.90
2 372.71 533.14 693.57 854.00 311.21 489.09 674.74 862.85 286.21 446.43 625.90 817.88
3 533.14 693.57 854.00 1014.44 489.09 674.74 862.85 1051.94 446.43 625.90 817.88 1018.29

t¼ 3 t¼ 3 t¼ 3
BNB regression model BPIG regression model BPLN regression model

Average profile Average profile Average profile

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 47.63 217.65 387.67 557.69 61.01 158.38 315.63 498.68 62.47 158.82 298.70 466.63
1 217.65 387.67 557.69 727.71 158.38 315.63 498.68 689.11 158.82 298.70 466.63 651.41
2 387.67 557.69 727.71 897.73 315.63 498.68 689.11 881.80 298.70 466.63 651.41 846.62
3 557.69 727.71 897.73 1067.75 498.68 689.11 881.80 1075.38 466.63 651.41 846.62 1048.66

t¼ 3 t¼ 3 t¼ 3
BNB regression model BPIG regression model BPLN regression model

Worst profile Worst profile Worst profile

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 45.54 180.36 315.19 450.02 59.75 135.14 252.57 391.05 59.64 138.67 248.03 376.88
1 180.36 315.19 450.02 584.85 135.14 252.57 391.05 536.82 138.67 248.03 376.88 517.66
2 315.19 450.02 584.85 719.68 252.57 391.05 536.82 685.10 248.03 376.88 517.66 665.98
3 450.02 584.85 719.68 854.51 391.05 536.82 685.10 834.43 376.88 517.66 665.98 819.34
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For illustrative purposes, the Normal copula will be paired with two NB Type I (NBI), or Poisson–Gamma, distributions.7

Then, the jpmf of the Normal copula-based NB regression model with varying dispersion and dependence can be obtained
using Equation (59).

A dataset of size n¼ 20,000 was randomly generated from the bivariate normal copula with two univariate NBI regression
models with varying dispersion and we assumed that the two response variables K1, j and K2, j represent claim frequencies for
two types of claims, Type I and Type II, from different types of coverage. Furthermore, we considered that the explanatory var-
iables v1–v5 influence the mean, dispersion, and copula parameters. In particular, we assumed that v1 is continuous and it can
take integer values between 18 and 75 and v2–v5 are discrete, with v2, v4, and v5 having two categories each and v3 having
three categories. Furthermore, we included v1, v2, v3, and v4 in Equations (61) and (63) to explain the mean and dispersion of
Type I claims and v1, v2, v3, and v5 in Equations (62) and (64) to explain the mean and dispersion of Type II claims. Finally,
we selected the common variables v1–v3 in Equation (65) to explain the dependence heterogeneity between two coverages.

The bivariate Normal copula-based NB regression model with varying dispersion and dependence is fitted on these data
and the results8 are presented in Table 16.

TABLE 13
Comparison of the A Posteriori, or Bonus–Malus, Premium Rates for t¼ 1 under the

Variance Principle, Bivariate Claim Frequency Regression Models with Varying Dispersion

t¼ 1 t¼ 1 t¼ 1
BNB regression model BPIG regression model BPLN regression model

Best profile Best profile Best profile

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 71.14 291.28 511.43 731.57 75.56 246.18 534.73 863.49 77.96 228.96 496.95 862.56
1 291.28 511.43 731.57 951.72 246.18 534.73 863.49 1200.74 228.96 496.95 862.56 1294.49
2 511.43 731.57 951.72 1171.86 534.73 863.49 1200.74 1540.17 496.95 862.56 1294.49 1769.17
3 731.57 951.72 1171.86 1392.01 863.49 1200.74 1540.17 1880.38 862.56 1294.49 1769.17 2271.92

t¼ 1 t¼ 1 t¼ 1
BNB regression model BPIG regression model BPLN regression model

Average profile Average profile Average profile

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 67.27 307.42 547.58 787.73 72.87 251.97 558.09 904.78 74.80 240.29 526.97 901.62
1 307.42 547.58 787.73 1027.88 251.97 558.09 904.78 1259.41 240.29 526.97 901.62 1329.89
2 547.58 787.73 1027.88 1268.04 558.09 904.78 1259.41 1616.01 526.97 901.62 1329.89 1790.58
3 787.73 1027.88 1268.04 1508.19 904.78 1259.41 1616.01 1973.31 901.62 1329.89 1790.58 2271.89

t¼ 1 t¼ 1 t¼ 1
BNB regression model BPIG regression model BPLN regression model

Worst profile Worst profile Worst profile

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 66.34 262.76 459.19 655.61 73.04 211.66 440.86 704.99 73.95 208.77 424.18 696.33
1 262.76 459.19 655.61 852.04 211.66 440.86 704.99 977.73 208.77 424.18 696.33 1003.48
2 459.19 655.61 852.04 1048.46 440.86 704.99 977.73 1252.87 424.18 696.33 1003.48 1332.26
3 655.61 852.04 1048.46 1244.89 704.99 977.73 1252.87 1528.92 696.33 1003.48 1332.26 1675.09

7Note that the Gamma mixing density that is used to derive the NBI has a different parameterization than the Gamma distribution given in Equation
(12). For more details about the use of the NBI distribution in an actuarial context, see, for instance, Tzougas, Vrontos, and Frangos (2018).

8Note that all the parameters of the model are statistically significant at a 5% threshold.
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6.6. Computational Aspects
This subsection discusses the computational issues related to the implementation of the EM algorithm for the BNB, BPIG,

and BPLN regression models with varying dispersion and the standard ML estimation method used for the Normal copula-
based NB regression model with varying dispersion and dependence. All computing was done using the programming lan-
guage R (R Core Team 2021).

Regarding the EM estimation procedure for the BNB, BPIG, and BPLN regression models, it should be noted that a rather
strict criterion was used and it took the algorithm, for cases both with and without covariate information, a quite large number
of iterations to converge. In particular, the stopping criterion was set as tol ¼ 10�12: The standard errors of the BNB, BPIG,
and BPLN regression models with varying dispersion were obtained using the standard approach of Louis (1982) for the stand-
ard errors for the EM algorithm.

We also call attention to the fact that, because the M-step involves three Newton-Raphson iterations, the choice of meaning-
ful initial values for the vectors of regression coefficients b1, b2, and b3 of all three bivariate mixed Poisson models is import-
ant, because it can influence the speed of convergence of the algorithm and its ability to locate the global maximum. Good
starting values for the regression parameters b1 and b2 were obtained by fitting two simple Poisson regressions. Alternatively,
the initial values can be obtained based on the data as follows: (i) calculate Eðki, jÞ, with i¼ 1, 2 and j ¼ 1, :::, n, for the 18 dif-
ferent risk classes, which can be formed by dividing the portfolio into clusters defined by the combinations of the available
explanatory variables in Table 1 and (ii) assuming a log-link functions for li, j (see Equations [3] and [4]), solve Equation (6)
with respect to b1 and b2, in the case i¼ 1 and i¼ 2, respectively, because, under the parameterization we adopted, the mar-
ginal means are explicit parameters of the bivariate mixed Poisson models with varying dispersion. Furthermore, meaningful
initial values for the regression parameters b3 were obtained by (i) calculating Corrðk1, k2Þ for the 18 different risk classes
based on all observations j ¼ 1, :::, n, (ii) calculating Eðki, jÞ with i¼ 1, 2 for the 18 different risk classes (or, alternatively,

TABLE 14
Comparison of the A Posteriori, or Bonus–Malus, Premium Rates for t¼ 2 under the

Variance Principle, Bivariate Claim Frequency Regression Models with Varying Dispersion

t¼ 2 t¼ 2 t¼ 2
BNB regression model BPIG regression model BPLN regression model

Best profile Best profile Best profile

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 54.93 224.92 394.90 564.89 62.74 181.82 378.71 605.61 66.00 174.25 348.58 573.77
1 224.92 394.90 564.89 734.87 181.82 378.71 605.61 839.91 174.25 348.58 573.77 832.60
2 394.90 564.89 734.87 904.86 378.71 605.61 839.91 1076.28 348.58 573.77 832.60 1113.15
3 564.89 734.87 904.86 1074.84 605.61 839.91 1076.28 1313.42 573.77 832.60 1113.15 1408.11

t¼ 2 t¼ 2 t¼ 2
BNB regression model BPIG regression model BPLN regression model

Average profile Average profile Average profile

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 50.36 230.12 409.89 589.66 59.61 180.97 383.57 615.93 62.05 177.77 360.91 589.90
1 230.12 409.89 589.66 769.43 180.97 383.57 615.93 855.20 177.77 360.91 589.90 846.51
2 409.89 589.66 769.43 949.20 383.57 615.93 855.20 1096.33 360.91 589.90 846.51 1120.00
3 589.66 769.43 949.20 1128.97 615.93 855.20 1096.33 1338.15 589.90 846.51 1120.00 1404.37

t¼ 2 t¼ 2 t¼ 2
BNB regression model BPIG regression model BPLN regression model

Worst profile Worst profile Worst profile

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 49.39 195.63 341.87 488.12 59.96 154.14 305.77 482.55 60.91 155.65 295.83 466.36
1 195.63 341.87 488.12 634.36 154.14 305.77 482.55 666.61 155.65 295.83 466.36 655.49
2 341.87 488.12 634.36 780.60 305.77 482.55 666.61 852.92 295.83 466.36 655.49 856.22
3 488.12 634.36 780.60 926.84 482.55 666.61 852.92 1040.11 466.36 655.49 856.22 1064.60
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calculating li, j, for i¼ 1, 2, based on the initial values for b1 and b2 and on the log-link functions given by Eqs. [3] and [4]),
(iii) solving Equation (9) with respect to VarðzjÞ>0, and subsequently (iv) solving the Equations (13), (17), and (21) with
respect to rj and using the log-link function for rj (see Eq. [5]) in the case of the BNB, BPIG, and BPLN models, respectively.

The computational time requirements of the BPLN distribution/regression model with varying dispersion, which has a jpmf
that cannot be written in closed form, were compared to those of the BNB and BPIG distributions/regression models with

TABLE 15
Comparison of the A Posteriori, or Bonus–Malus, Premium Rates for t¼ 3 under the

Variance Principle, Bivariate Claim Frequency Regression Models with Varying Dispersion

t¼ 3 t¼ 3 t¼ 3
BNB regression model BPIG regression model BPLN regression model

Best profile Best profile Best profile

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 44.63 182.73 320.83 458.94 54.65 145.58 293.19 464.71 58.13 143.33 272.77 434.72
1 182.73 320.83 458.94 597.04 145.58 293.19 464.71 642.82 143.33 272.77 434.72 617.91
2 320.83 458.94 597.04 735.14 293.19 464.71 642.82 822.90 272.77 434.72 617.91 814.87
3 458.94 597.04 735.14 873.25 464.71 642.82 822.90 1003.75 434.72 617.91 814.87 1021.05

t¼ 3 t¼ 3 t¼ 3
BNB regression model BPIG regression model BPLN regression model

Average profile Average profile Average profile

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 40.12 183.35 326.59 469.82 51.52 142.72 292.14 465.05 53.94 143.75 278.37 442.40
1 183.35 326.59 469.82 613.05 142.72 292.14 465.05 644.11 143.75 278.37 442.40 624.08
2 326.59 469.82 613.05 756.28 292.14 465.05 644.11 824.96 278.37 442.40 624.08 816.63
3 469.82 613.05 756.28 899.52 465.05 644.11 824.96 1006.48 442.40 624.08 816.63 1016.26

t¼ 3 t¼ 3 t¼ 3
BNB regression model BPIG regression model BPLN regression model

Worst profile Worst profile Worst profile

k1, j=k2, j 0 1 2 3 0 1 2 3 0 1 2 3

0 39.26 155.51 271.75 388.00 51.97 122.99 234.97 366.53 52.68 126.40 230.59 354.57
1 155.51 271.75 388.00 504.24 122.99 234.97 366.53 504.45 126.40 230.59 354.57 490.66
2 271.75 388.00 504.24 620.49 234.97 366.53 504.45 644.48 230.59 354.57 490.66 634.38
3 388.00 504.24 620.49 736.73 366.53 504.45 644.48 785.36 354.57 490.66 634.38 783.16

TABLE 16
Normal Copula-Based NB Regression Model with Varying Dispersion and Dependence

Estimation Results

Variable Coeff. b 1 Coeff. b2 Coeff. b3 Coeff. b4 Coeff. b5

Intercept –2.8489 –2.4153 2.7503 2.7006 0.0831
v1 –0.0023 0.0063 –0.0060 0.0003 0.0112
v2 C2 –0.0461 –0.0899 0.5459 –0.0438 0.0910
v3 C2 0.3603 0.0258 –0.7242 –0.1279 0.1526
v3 C3 0.0309 –0.1396 –0.8426 –0.0277 0.1255
v4 C2 –0.1214 –– 0.6805 –– ––

v4 C3 –0.0262 –– 0.0797 –– ––

v5 C2 –– 0.2281 –– 0.2688 –
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varying dispersion. As anticipated, the BNB and BPIG distributions/regression models with varying dispersion compared
favorably to the BPLN distribution/regression model with varying dispersion in terms of computing times required for ML
estimation, because the numerical evaluation of the integrals at the E-step is chronologically demanding in the case of the
BPLN distribution/regression model with varying dispersion.

As far as the ML estimation of the parameters of the Normal copula-based NB regression model with varying dispersion
and dependence is concerned, the log-likelihood to be maximized is given by

lðhÞ ¼
Xn
i¼1

log ðhðk1, j, k2, j; l1, j,r1, j,l2, j, r2, jÞÞ, (69)

where h ¼ ðb1T ,b2T , b3T ,b4T ,b5TÞT is the vector of the parameters and where h is the jpmf of the bivariate mixed Poisson
model, which is given by Equation (59).

Minimization methods, such as the Nelder-Mead algorithm, can be used for estimating the parameters of the model. These
methods require the negative of the log-likelihood, which is given in Equation (69), and the standard errors of the parameters are
computed numerically using the Hessian matrix, which is updated in each iteration. Finally, good initial values can be provided by
fitting the univariate NB regression models with varying dispersion on the number claims for each claim type via a univariate ver-
sion of the EM algorithm described in Subsection 2.1 and using the method of inference functions for margins (see Joe
1997, 2005).

7. CONCLUDING REMARKS
In this article we introduced a general class of bivariate mixed Poisson regression models with varying dispersion that can effi-

ciently capture overdispersion and accurately account for the strength of the positive correlation between MTPL bodily injury and
property damage claims by offering full flexibility in the choice of marginals and by utilizing all available information from
important risk factors through regression specifications for both mean parameters and the dispersion parameter of the models.

Our main contribution is that we developed an EM-type algorithm that can reduce the computational burden for ML estima-
tion for our family models, the majority of which have cumbersome densities. In order to illustrate the versatility of the EM
estimation scheme we presented, we fitted three members of this family, the BNB, BPIG, and BPLN regression models with
varying dispersion, on two-dimensional MTPL data from a European insurance company. Also, reliable estimates of the stand-
ard errors of the parameters of these models were obtained through expressions that were directly produced by the EM algo-
rithm for the observed information matrix of each model.

Furthermore, from a practical business point of view, the proposed family of models combined with the adopted modeling
framework can provide insurance companies with a useful tool for pricing motor insurance contracts when the dynamics for
premium determination are governed by the interactions of the different types of MTPL claims. In our real data application,
the bonus-malus premiums resulting from the BNB, BPIG, and BPLN models were computed via the expected value and vari-
ance principles, providing alternative options to the insurer when deciding on their ratemaking strategies. Additionally, it is
worth noting that this family of models is suitable for applications not only for bivariate MTPL insurance ratemaking purposes
but also in various multivariate domains, because these models can be easily generalized to any vector size response variable,
thus providing a very flexible way of modeling overdispersed high-dimensional count valued data that contain variables that
exhibit complex positive dependencies. An interesting future research direction would be to tackle bonus-malus ratemaking
based on generalizations of the proposed family of models, such as, for example, by adding different random effects for model-
ing the unobserved heterogeneity when dealing with different types of claims from different types of coverage (see Berm�udez
and Karlis 2017) or, for instance, by including time series components to take into account both cross-dependence between dif-
ferent types of claims and time dependence; see Berm�udez, Guill�en, and Karlis (2018).

Also, we presented a generalization of the previous setup by considering a Normal copula-based mixed Poisson regression
model for dispersion and dependence parameters that is ideally suited for modeling count data that contain claims from differ-
ent types of coverage, because it allows us to take into account the effect of policyholder and coverage type covariates on the
mean, dispersion, and copula parameters. We exemplified our approach by fitting the Normal copula-based NB regression
model with varying dispersion and dependence on a simulated dataset using ML estimation. Finally, it is worth noting that an
alternative approach for modeling two different types of claims from different types of coverage would be to take into account
the policyholder and coverage-type effects through the dependence structure between the random effects in the mixed Poisson
margins that are assumed to follow continuous mixing densities. This dependence can be introduced by means of a Normal

28 G. TZOUGAS AND A. PIGNATELLI DI CERCHIARA



copula proceeding along similar lines as in Pechon, Trufin, and Denuit (2018). This approach will be explored in a forthcom-
ing paper for the case when regression specifications are allowed on the mean, dispersion, and dependence parameters.
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