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Abstract: In this paper, we present a new family of bivariate mixed exponential regression models
for taking into account the positive correlation between the cost of claims from motor third party
liability bodily injury and property damage in a versatile manner. Furthermore, we demonstrate how
maximum likelihood estimation of the model parameters can be achieved via a novel Expectation-
Maximization algorithm. The implementation of two members of this family, namely the bivariate
Pareto or, Exponential-Inverse Gamma, and bivariate Exponential-Inverse Gaussian regression
models is illustrated by a real data application which involves fitting motor insurance data from a
European motor insurance company.

Keywords: bivariate claim size modeling; regression models for the marginal means and dispersion
parameters; motor third party liability insurance; Expectation-Maximization algorithm

1. Introduction

Over the last few decades, there has been a vast increase in actuarial research works
focusing on modeling costs of a particular claim type based on various claim severity
modeling approaches such as

• finite mixture models: see, for example, (Fung et al. 2021; Lee and Lin 2010; Miljkovic
and Grün 2016; Tzougas et al. 2014, 2018, 2019);

• composite or splicing models: see for instance, (Bakar et al. 2015; Calderín-Ojeda and
Kwok 2016; Cooray and Ananda 2005; Grün and Miljkovic 2019; Nadarajah and Bakar
2014; Parodi 2020; Pigeon and Denuit 2011; Scollnik 2007; Scollnik and Sun 2012).

• combinations of finite mixtures and composite models: see Reynkens et al. (2017).

Furthermore, several works have focused on understanding how the claim severity
distribution is influenced by certain risk factors. See, for example, (Frees 2009; Laudagé et al.
2019; Tzougas and Jeong 2021; Tzougas and Karlis 2020) among many more. However, even
if the literature in the univariate setting is abundant, the bivariate, and/or multivariate,
extensions of such models have not been explored in depth even if in non-life insurance,
the actuary may often be concerned with modeling jointly different types of claims and
their associated costs.

In this paper, motivated by a European Motor Third Party Liability (MTPL) insurance
data set which is described in Section 4 we introduce a family of bivariate mixed Expo-
nential regression models for joint modeling the costs from positively correlated bodily
injury and property damage claims in terms of covariates. The proposed class of bivariate
claim severity regression models is based on a mixing between two marginal Exponential
distributions and a unit mean continuous and at least twice differentiable mixing density.
The modeling framework we consider can account for the positive dependency between the
two claim types in a flexible manner since it allows for a variety of alternative distributional
assumptions for the mixing density. Furthermore, depending on the choice of the mixing
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density the bivariate mixed Exponential model can be used to model both moderate and
large bodily injury and property damage claim sizes which can be the result of the same
accident. At this point, it is worth noting that modeling positively correlated claims and
their associated counts for the same and/or different types of coverage, such as home
and auto insurance, bundled together under a single policy, has been explored by many
articles. See for example, (Bermúdez and Karlis 2011, 2012, 2017, 2021; Shi and Valdez
2014a, 2014b; Abdallah et al. 2016; Bermúdez et al. 2018; Pechon et al. 2018, 2019, 2021;
Bolancé and Vernic 2019; Denuit et al. 2019; Fung et al. 2019; Bolancé et al. 2020; Jeong
and Dey 2021; Gómez-Déniz and Calderín-Ojeda 2021; Tzougas and di Cerchiara 2021a,
2021b). Furthermore, Baumgartner et al. (2015) and Oh et al. (2021) consider shared random
effects for capturing possible associations between the frequency and severity and/or
among the longitudinal claims. However, with the exception of the bivariate, and/or
multivariate Pareto model which have been actively studied in the actuarial literature for
the case with and without covariates, see, for instance, Yang et al. (2011), Cockriel and
McDonald (2018) and Jeong and Valdez (2020), modeling positively correlated claim sizes
based on alternative e bivariate, and/or multivariate, mixed Exponential regression models
remains a largely uncharted research territory. Therefore, this is the main contribution
of this study from a practical insurance business perspective. Additionally, our contribu-
tion from a computational maximum likelihood (ML) estimation standpoint is that we
develop an Expectation-Maximization (EM) type algorithm1 which takes advantage of the
stochastic mixture representation of the bivariate mixed Exponential regression model for
maximizing its log-likelihood in a computationally efficient and parsimonious manner.
For expository purposes, the bivariate Pareto (BPA), or Exponential-Inverse Gamma, and
bivariate Exponential-Inverse Gaussian (BEIG) regression models are fitted on the MTPL
bodily injury and property damage data set.

Finally, it should be noted that when dealing with different types of claims from
different types of coverage, such as motor and home insurance, the regressors on the mean
parameters may differ according to different individual and coverage-type risk factors.
However, in the case of our MTPL data, both mean parameters of the bivariate mixed
Exponential regression model are only modeled using common explanatory variables for
both claim types. Thus, we extend the proposed setup by pairing a bivariate Normal copula
with the PA and EIG regression models. These copula-based models, which can cope with
both positive and negative dependence structures, are compared with the BPA and BEIG
regression models using a simulated data set in which we assume that we have different
types of claims from different types of cover.

The rest of the paper proceeds as follows. Section 2 discusses how the bivariate mixed
exponential regression model can be constructed and the joint probability density functions
(jpdfs) of the BPA and BEIG regression models, which are used for demonstration purposes,
are derived. Section 3 deals with parameter estimation for the proposed model based on the
EM algorithm. In Section 4, the models presented in Section 2 are fitted to the MTPL bodily
injury and property damage claims data set and the comparison based on the simulated
data set mentioned in the previous paragraph is presented. Finally, concluding remarks are
provided in Section 5.

2. The Bivariate Mixed Exponential Regression Model

Consider a non-life MTPL insurance which contains bodily injury and property dam-
age claims and their associated costs. Please note that it is possible that there exists a
positive correlation between the two types of claims we propose the following family
of models.

The claim amounts of both types are denoted as Yi, i = 1, 2, which are well-defined
when there is at least one claim for each type of claim. Furthermore, we consider that
conditional on a random effect Z > 0, the random variables Yi, i = 1, 2 are independent
exponential random variables with rates µiZ. The random effect Z is a continuous random
variable with density gφ(z) which takes positive values only and it mainly controls the
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variation and correlation of the whole bivariate sequence. To avoid the identifiability
problem, we have to restrict the expectation E[Z] to be a fixed constant and one usually
lets E[Z] = 1. On the other hand, to account for the impact of heterogeneity between
different policyholders, the rates µi, i = 1, 2 are modeled as functions of explanatory
variables xi ∈ Rdi×1 such that µi = exp{xi

T βi}, where di ∈ N+ and βi ∈ Rdi×1 are the
corresponding coefficients. Then, the unconditional joint density function, fY(y), of this
bivariate sequence Y = (Y1, Y2) is given by

fY(y) =
∫ ∞

0

(
2

∏
i=1

fYi |Z(y, z)

)
gφ(z)dz

=
∫ ∞

0

1
µ1µ2

1
z2 exp

{
− y1

µ1z
− y2

µ2z

}
gφ(z)dz.

(1)

In the following, for demonstration purposes, we specialize with two different mixing
densities, the Inverse Gamma (IGA) and Inverse Gaussian (IG) distributions, which lead to
the bivariate Pareto (BPA) and bivariate Exponential-Inverse Gaussian (BEIG) regression
models, respectively.

2.1. Bivariate Pareto Regression Model

The general inverse Gamma density function IGA(α, β)is defined as

g(x; α, β) =
βα

Γ(α)
x−α−1e−

β
2 ,

where the mean and variance are β
α−1 and β2

(α−1)2(α−2) . To avoid the aforementioned iden-
tification problem, the mean of this density function has to be one. Then we have the
following parametrization by letting α = φ + 1 and β = φ,

gφ(z) =
φφ+1

Γ(φ + 1)
z−φ−2e−

φ
z , z > 0, φ > 0. (2)

Under this parametrization, the random variable Z has a unit mean and variance
equal to 1

φ−1 for φ > 1. This density is denoted as IGA(φ + 1, φ). Then, the joint density of
the bivariate Pareto (BPA) regression model is given by

fY(y) =
∫ ∞

0

1
µ1µ2

1
z2 exp

{
− y1

µ1z
− y2

µ2z

}
gφ(z)dz

=
φφ+1

Γ(φ + 1)µ1µ2

∫ ∞

0
z−2e−

y1
µ1z−

y2
µ2z z−φ−2e−

φ
z dz

=
φφ+1

Γ(φ + 1)µ1µ2

Γ(φ + 3)(
φ + y1

µ1
+ y2

µ2

)φ+3

=
φφ+1(

φ + y1
µ1

+ y2
µ2

)φ+3
(φ + 2)(φ + 1)

µ1µ2
.

(3)

Here, up to a scaling factor, the integrand is the density function of an IGA(φ + 3, φ +
y1
µ1

+ y2
µ2
) distribution. Therefore, the value of the integral is the reciprocal of the normalizing

constant. The mean, variance, covariance and correlation in the case of the BPA model are
given by
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E[Yi] = EZ[EY[Yi|Z]] = EZ[µiZ] = µi,

Var(Yi) = EZ[VarY(Yi|Z)] + VarZ(EZ[Yi|Z])

= EZ[µ
2
i Z2] + VarZ(µiZ) = µ2

i

(
φ + 1
φ− 1

)
,

Cov(Y1, Y2) = E[Cov(Y1, Y2|Z)] + Cov(E[Y1|Z],E[Y2|Z])

= 0 + Cov(µ1Z, µ2Z) =
µ1µ2

φ− 1

and

Corr(Y1, Y2) =
Cov(Y1, Y2)√

Var(Y1)Var(Y2)
=

1
φ + 1

.

(4)

2.2. Bivariate Exponential-Inverse Gaussian Regression Model

In general, we say that the random variable X follows a generalized Inverse Gaussian
GIG(a, b, p) where (a, b, p) ∈ (0, ∞)2 ×R if it has density

g(x; a, b, p) =
(a/b)

p
2

2Kp(
√

ab)
xp−1e−

1
2 (ax+ b

x ), (5)

where Kp is the modified Bessel function of the second kind. The random variable X has
mean and variance

E[X] =

√
bKp+1(

√
ab)

√
aKp(
√

ab)
, Var(X) =

b
a

(
Kp+2(

√
ab)

Kp(
√

ab)
−
(

Kp+1(
√

ab)

Kp(
√

ab)

))
.

Then the general inverse Gaussian density IG(γ, δ) is a special case of Generalized
Inverse Gaussian GIG(γ2, δ2,− 1

2 ) where the parameter p = − 1
2 is fixed. It density function

has following form,

g(x; γ, δ) =
δ√
2π

eδγx−
3
2 exp

{
−1

2

(
γ2x +

δ2

x

)}
(6)

Similar to the inverse gamma case, to avoid the identification problem, we have to
restrict the mean of IG(γ, δ) to be one. Then one possible way is to set γ = δ = φ. Then the
density becomes,

gφ(z) =
φ√
2π

eφ2
z−

3
2 exp

{
−φ2

2

(
1
z
+ z
)}

. (7)

The random effect Z now has a unit mean and variance 1
φ2 . The unconditional joint

density function of the bivariate Exponential-Inverse Gaussian (BEIG) can be derived
as follows

fY(y) =
∫ ∞

0

( 2

∏
i=1

fYi |Z(y, z)
)

gφ(z)dz

=
∫ ∞

0

1
µ1µ2z2 exp

(
− y1

µ1z
− y2

µ2z

)
× φ√

2π
eφ2

z−
3
2 exp

(
− φ2

2

(1
z
+ z
))

dz

=
φeφ2

µ1µ2
√

2π

∫ ∞

0
z−

7
2 exp

(
− 1

2

[2y1

µ1
+

2y2

µ2
+ φ2

]1
z
− φ2

2
z
)

dz.

=
φeφ2

µ1µ2
√

2π
2K− 5

2

(√
φ2
(

2y1

µ1
+

2y2

µ2
+ φ2

)) φ2

2y1
µ1

+ 2y2
µ2

+ φ2

 5
4

.

(8)
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The integrand above is, up to a scaling constant, the density of a GIG
(

φ2, 2y1
µ1

+ 2y2
µ2 + φ2,− 5

2

)
.

Therefore, the integral value is the reciprocal of the normalizing constant. The mean, variance, co-
variance and correlation in the case of the BEIG model are given by

E[Yi] = EZ[EY[Yi|Z]] = EZ[µiZ] = µi,

Var(Yi) = EZ[VarY(Yi|Z)] + VarZ(EZ[Yi|Z])

= EZ[µ
2
i Z2] + VarZ(µiZ) = µ2

i

(
φ2 + 2

φ2

)
,

Cov(Y1, Y2) = E[Cov(Y1, Y2|Z)] + Cov(E[Y1|Z],E[Y2|Z])

= 0 + Cov(µ1Z, µ2Z) =
µ1µ2

φ2

and

Corr(Y1, Y2) =
Cov(Y1, Y2)√

Var(Y1)Var(Y2)
=

1
φ2 + 2

.

(9)

3. The EM Algorithm for the Bivariate Mixed Exponential Regression Model

In this Section, an Expectation-Maximization (EM) algorithm is applied to facilitate the
maximization likelihood estimation of the bivariate mixed Exponential regression model.

Consider the observed bivariate response sequence {Yj}j=1,...,n and the corresponding
covariates {x1,j}j=1,...,n and {x2,j}j=1,...,n. Furthermore, let Θ = {β1, β2, φ} be the parameter
space for this model. Then, the log-likelihood function can be written as

`(Θ) =
n

∑
j=1

log

(∫ ∞

0

1
µ1,jµ2,jz2 exp

{
−

y1,j

µ1,jz
−

y2,j

µ2,jz

}
gφ(z)dz

)
. (10)

The direct maximization of Equation (10) with respect to parameter space Θ is com-
plicated. Fortunately, in such cases, the EM algorithm can be used to simplified the
maximization problem of Equation (10). In particular, if we augment the unobserved
variable {Zj}j=1,...,n, then the complete log-likelihood function is given by

`c(Θ) =
n

∑
j=1

2

∑
i=1

(
− log(µi,jzj)−

yi,j

µi,jzj

)
+

n

∑
j=1

log(gφ(zj))

∝
n

∑
j=1

2

∑
i=1

(
− log(µi,j)−

yi,j

µi,jzj

)
+

n

∑
j=1

log(gφ(zj)).

(11)

The two-steps of EM algorithm are described in what follows.

• E-step: The Q-function, Q(Θ; Θ(r)), which is the conditional posterior expectation of
Equation (11), is given by

Q(Θ; Θ(r)) =
n

∑
j=1

2

∑
i=1

(
− log(µ(r)

i,j )−
yi,j

µi,t
E(r)

z,j [z
−1]

)
+

n

∑
j=1

E(r)
z,j [log(gφ(z))], (12)

where µ
(r)
i,j = exp{xT

i,jβ
(r)
i } and where the conditional expectation E(r)

z,j [h(z)] for any
real value function, h(.), is defined as follows

E(r)
z,j [h(z)] = E[h(z)|Θ(r), yj, x1,j, x2,j] =

∫ ∞

0
h(z)π(z|Θ(r), yt, x1,j, x2,j)dz, (13)

where the posterior density function is defined as

π(z|Θ(r), yj, x1,j, x2,j) =

1
µ1,jµ2,jz2 exp

{
− y1,j

µ1,jz
− y2,j

µ2,jz

}
gφ(z)

fY(yt)
. (14)
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• M-step: After calculating the Q-function, we find its maximum global point, Θ(j+1),
i.e., we update the parameters by computing the gradient function, g(.), and the
Hessian matrix, H(.), of the Q-function. In particular, the Newton–Raphson algorithm
is used for maximizing the Q-function and the parameters β1, β2 for the Exponential
part and the parameter φ for the randnom effect part are updated separately as
shown below.

– For the Exponential part,

β
(r+1)
i = β

(r)
i − H−1(β

(r)
i )g(β

(r)
i ), i = 1, 2

g(β
(r)
i ) = XT

i Vi H(β
(r)
i ) = XT

i DiXi

Vi =


 yi,j

µ
(r)
i,j

E(r)
z,j [z

−1]− 1


j=1,...,n


Di = diag


− yi,j

µ
(r)
i,j

E(r)
z,j [z

−1]


j=1,...,n

,

(15)

where Xi = (xi,1, . . . , xi,n) is the design matrix for µ
(r)
i,j .

– For the random effect part, we derive the first and second order derivatives of
log gφ(θ) and then we take the posterior expectations to construct its gradient
functions and the Hessian matrix. In what follows, we derive the derivatives for
the IGA and IG densities which were defined in the previous section. Finally, we
update φ using the one-step ahead Newton iteration

φ(r+1) = φ(r) − g(φ(r))

h(φ(r))
. (16)

In what follows, we will show how Equation (11) can be modified in the case of
the IGA and IG mixing densities.

1. Inverse Gamma mixing density

The first and second derivatives of the term ∑n
j=1 logE(r)

z,j [gφ(z)] are given by

g(φ(r)) = n
(

1 +
1

φ(r)
+ log(φ(r))−Ψ(φ(r) + 1)

)
−

n

∑
j=1

(E(r)
z,j [log z] +E(r)

z,j [z
−1])

and

h(φ(r)) = n
(
− 1
(φ(r))2

+
1

φ(r)
−Ψ′(φ(r) + 1)

)
,

where the Ψ(x) = Γ′(x)
Γ(x) is the digamma function and Ψ′(x) is the corresponding

first derivative. Furthermore, it is easy to observe that at iteration r, the posterior

density would be an IGA

(
φ(r) + 3, φ(r) +

y1,j

µ
(r)
1,j

+
y2,j

µ
(r)
2,j

)
. Thus, the expectations

involved in the E-step of the algorithm are given by
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E(r)
z,j [z

−1] =
φ(r) + 3

φ(r) +
y1,j

µ
(r)
1,j

+
y2,j

µ
(r)
2,j

and

E(r)
z,j [log z] = log

φ(r) +
y1,j

µ
(r)
1,j

+
y2,j

µ
(r)
2,j

−Ψ(φ(r) + 3).

(17)

2. Inverse Gaussian density
In the case of the IG mixing density, the first and second derivatives of the term

∑n
j=1 logE(r)

z,j [gφ(z)] are given by

g(φ(r)) = n
(

1
φ(r)

+ 2φ(r)
)
− φ(r)

n

∑
j=1

(
E(r)

z,j [z] +E(r)
z,j [z

−1]
)

and

h(φ(r)) = n
(
− 1
(φ(r))2

+ 2
)
−

n

∑
j=1

(
E(r)

z,j [z] +E(r)
z,j [z

−1]
)

.

(18)

Furthermore, one can easily see that at iteration r, the posterior density in this

case is a GIG

(
(φ(r))2, (φ(r))2 +

2y1,j

µ
(r)
1,j

+
y2,j

µ
(r)
2,j

,− 5
2

)
. Therefore, the expectations

involved in the E-step of the algorithm are given by

E(r)
z,j [z] =

√√√√√ (φ(r))2 +
2y1,j

µ
(r)
1,j

+
y2,j

µ
(r)
2,j

(φ(r))2

η + 1
η + 3

η + 3

and

E(r)
z,j [z

−1] =

√√√√√ (φ(r))2

(φ(r))2 +
2y1,j

µ
(r)
1,j

+
y2,j

µ
(r)
2,j

η + 1
η + 3

η + 3
+

5

(φ(r))2 +
2y1,j

µ
(r)
1,j

+
y2,j

µ
(r)
2,j

,

(19)

where η =

√√√√(φ(r))2

(
(φ(r))2 +

2y1,j

µ
(r)
1,j

+
y2,j

µ
(r)
2,j

)
.

4. Empirical Analysis

The study is based on data from automobile policies from a major insurance European
company for the underwriting years 2012–2019. This data set contains bodily injury (BI)
and property damage (PD) claims and their associated claim costs, denoted by Y1 and
Y2, respectively, and risk factors that affect both Y1 and Y2. An exploratory analysis was
conducted so as to select the subset of covariates with the highest predictive power for Y1
and Y2. There were 7263 observations in total which met our criteria.

The summary statistics for Y1 and Y2 are shown in Table 1 and Figure 1. As was
expected, both Y1 and Y2 are positively skewed. Furthermore, the Pearson correlation test
indicates that it is appropriate to model both types of claim costs based on a single bivariate
model rather than two independent univariate models.
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Table 1. Summary statistics of two types of d claim amount. The correlation test is an one-sided test,
where the alternative hypothesis is ’true correlation is greater than 0’.

Aggregated
Claim Min Median Mean Max Standard

Deviation Correlation p-Value

Y1 0.9 2413.4 11,017.3 251,958.2 27,128.85 0.1095 0.000Y2 6.2 1012.4 1871.2 14,818.2 2217.138
F

re
qu

en
cy

0 5 10 

Property damage Y1 / 1000

15

0
50

0
10

00
15

00

Property damage Y2 / 1000

F
re

qu
en

cy

0 5 10 15

0
50

0
10

00
15

00

Figure 1. Empirical distribution of two types of d claim amount.

Furthermore, a description of the explanatory variables which we included in the
regression analysis for Y1 and Y2 is provided below.

• The variable Driver’s age. Policyholders aged 18 to 90 years old.
• The variable Vehicle’s age. Vehicles aged 0 to 60 years old.
• The variable Car cubism, ’CC’, consists of four categories. Vehicles with horse power

’0–1299 cc’ (C1), ’1300–1399 cc’ (C2), ’1400–1599 cc’ and ’greater or equal 1600 cc’ (C3).
• The variable ’PT’ consisted of three types of policy, ’Economic type which includes

only MTPL coverage’ (C1) , ’Middle type which includes apart from MTPL coverage
other types of coverage’ (C2), and ’Expensive type—Own coverage’ (C3).

• The variable ’Region’ consisted of three board regions, ’Capital city’ (C1), ’province
cities of the mainland’ (C2), and ’province cities of the island area’ (C3).

Additionally, the empirical distributions of the categorical and continuous explanatory
variables are shown in Table 2 and Figure 2, respectively.

The BPA and BEIG regression models were fitted to the claim costs Y = (Y1, Y2). All
computing was made using the R software. The vector of parameters Θ = {β1, β2, φ} was
estimated using the EM algorithm which was presented in Section 3 and their standard
deviations were obtained through expressions that were directly produced by the EM
algorithm for the observed information matrix of each model. The fit of the competing
models was compared by employing the classic hypothesis/specification tests Akaike infor-
mation criterion (AIC) and Bayesian information criterion (BIC). The results are presented
in Table 3. We see that the values of the estimated regression coefficients of the variables
Driver’s Age, Vehicle’s Age and Region have a a similar effect (positive and/or negative)
and are almost identical for both response variables in the case of the bivariate claim size
models. Furthermore, we observe that the best fitting performances are provided by the
BEIG regression models since according to a very well known rule of thumb, two models
can be considered to be significantly different if the difference in their respective AIC and
SBC values is greater than ten and five, respectively, see Anderson and Burnham (2004)
and Raftery (1995), respectively.
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Table 2. Empirical distributions of categorical variables.

Horse Power (CC) Policy Type (PT) Region

C1 2036 1144 4220
C2 2417 1940 2333
C3 1833 4179 710
C4 977 - -
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Figure 2. Empirical distributions of continuous explanatory variables.

Table 3. Estimated parameters and standard errors in parentheses for the BPA and BEIG regressions
model. AIC: Akaike information criterion; BIC: Bayesian information criterion.

BPA BEIG

Response Y1 Y2 Y1 Y2

φ
0.5258 0.7905

(0.0394) (0.016)

Intercept 8.6756 8.0076 8.5108 7.8137
(0.0979) (0.0905) (0.0905) (0.0861)

Driver’s Age 0.0010 0.0028 0.0007 0.0028
(0.0014) (0.0012) (0.0014) (0.0013)

CC: C2 −0.0854 0.0761 −0.0523 0.0918
(0.0486) (0.0431) (0.0481) (0.0455)

CC: C3 0.0517 0.0661 0.0498 0.0615
(0.0517) (0.0463) (0.0517) (0.0489)

CC: C4 −0.0064 0.1104 0.0238 0.1183
(0.0633) (0.0564) (0.0625) (0.0595)

PT: C2 0.4555 −0.0352 0.3859 −0.0684
(0.0614) (0.0535) (0.0599) (0.0564)

PT: C3 0.4057 −0.0764 0.3622 −0.0989
(0.0559) (0.0482) (0.0540) (0.0506)

Vehcle’s Age 0.0155 −0.0015 0.0139 −0.0021
(0.0035) (0.0031) (0.0035) (0.0033)

Region: C2 −0.1552 0.0502 −0.1125 0.0736
(0.0417) (0.0369) (0.0411) (0.0389)

Region: C3 0.2422 −0.0306 0.2493 −0.0189
(0.0644) (0.0577) (0.0643) (0.0609)

AIC 267,937.7 267,843.1
BIC 268,082.4 267,987.8

Finally, we consider an extension of the proposed framework using copulas. In
particular, the Gaussian copula is paired with the PA and EIG regression models. The
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copula-based models are compared to the BPA and BEIG regression models using two
simulated datasets. The probability density functions of the univariate PA and EIG have
similar definitions as those their bivariate counterparts. In particular, we have that

fPA(yi,t) =
φφ+1(φ + 1)
µi,t(φ +

yi,t
µi,t

)
, fEIG(yi,t) =

φ2eφ2

µi,t
2K− 3

2

(√
φ2
(

φ2 +
yi,t
µi,t

)) φ2

φ2 +
2yi,t
µi,t

 3
4

, (20)

where i = 1, 2 for two marginals, j = 1, . . . , n for different policyholders and µi,j are the
regression parameters which have the same definition as in Section 2. Two random samples
of size n = 5000 are generated from the bivariate Gaussian copula which is paired with the
PA and EIG marginals, respectively. Then we consider two sets of explanatory variables
ν1,i − ν4,i that determine the size of µi,j for two marginals. In particular, we assume that
ν1,i take integer values within the ranges (18–75) and (0–20), respectively. The rest of the
variables are considered to be categorical. In particular, we let ν2,1 have two categories
while ν2,2 has three. Then, we consider that ν3,i and ν4,i have three and four categories,
respectively. All the explanatory variables are generated from the uniform distribution
with length n. The fitting results are shown in Tables 4 and 5, respectively.

Table 4. Model comparison between Gaussian copula with two PA marginals and BPA regression
model. Data are generated from Gaussian copula with two PA marginals. The AIC and BIC values
are for the bivariate model.

Y1 Y2

True Copula
with PA BPA True Copula

with PA BPA

φ 2 2.0713 2.6455 φ 3 3.0353 2.6455
Intercept −1 −1.0445 −1.0447 Intercept −1.5 −1.5936 −1.5675

ν1,1 0.0003 0.0012 0.0008 ν1,2 0.003 0.0065 0.0070
ν2,1C2 −0.4 −0.3527 −0.3603 ν2,2C2 −0.3 −0.3182 −0.3152
ν3,1C2 −0.05 0.0125 −0.0089 ν2,2C3 −0.2 −0.2113 −0.2205
ν3,1C3 0.1 0.0385 0.0190 ν3,2C2 −0.05 −0.0329 −0.0227
ν4,1C2 0.2 0.1422 0.1651 ν3,2C3 0.15 0.1675 0.1628
ν4,1C3 0.3 0.2438 0.2571 ν4,2C2 0.25 0.2746 0.2700
ν4,1C4 0.4 0.3157 0.3216 ν4,2C3 0.35 0.4538 0.4366

ν4,2C4 0.45 0.5197 0.5063

ρ 0.2 0.1941
AIC −4486.499 −4418.983 BIC −4356.155 −4301.673

Table 5. Model comparison between Gaussian copula model with two EIG marginals and BEIG
regression model. Data are generated from Gaussian copula with two EIG marginals. The AIC and
BIC values are for the bivariate model.

Y1 Y2

True Copula
with EIG BEIG True Copula

with EIG BEIG

φ 2 2.0168 2.1322 φ 3 2.7243 2.1322
Intercept −1 −1.0676 −1.0694 Intercept −1.5 −1.4777 −1.4709

ν1,1 0.0003 0 −0.0002 ν1,2 0.003 −0.0020 -0.0008
ν2,1C2 −0.4 −0.3679 −0.0002 ν2,2C2 −0.3 −0.2583 −0.2654
ν3,1C2 −0.05 −0.0411 −0.0348 ν2,2C3 −0.2 −0.1480 −0.1601
ν3,1C3 0.1 0.1598 0.1676 ν3,2C2 −0.05 −0.0230 −0.0279
ν4,1C2 0.2 0.2485 0.2507 ν3,2C3 0.15 0.1724 0.1661
ν4,1C3 0.3 0.3525 0.3589 ν4,2C2 0.25 0.2030 0.2083
ν4,1C4 0.4 0.4232 0.4334 ν4,2C3 0.35 0.3321 0.3378

ν4,2C4 0.45 0.4537 0.4450

ρ 0.2 0.1920
AIC −3310.483 −3260.53 BIC −3180.139 −3143.22
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5. Concluding Remarks

In this paper, we developed a class of bivariate mixed Exponential regression models
which can approximate moderate and large claim costs in an efficient manner based on
the choice of mixing density. We illustrated our approach by fitting the BPA and BEIG
regression models on MTPL data which were provided by a European insurance company.
The proposed family of models can accommodate the positive correlation between MTPL
bodily injury and property damage claims and their associated costs, when explanatory
variables for each type of claims are taken into account through regression structure for
their mean parameters.

The main achievement is that we developed an EM-type algorithm which is computa-
tionally efficient. This was demonstrated by obtaining reliable estimates when applying the
models to the read data. Finally, the standard errors of estimated parameters were easily
produced as byproducts of the algorithm.
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Note
1 Please note that the EM algorithms which are used for fitting the BPA and BEIG regression models are direct extensions from the

univariate to the multivariate case of the EM algorithms which were developed by Tzougas and Karlis (2020).
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