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Abstract

Data have and will continue to be at the centre of Prognostics and Health Management
systems in training efficient machine learning models to predict remaining useful
life of critical equipment. For example, remaining time to the next degradation in
turbofan engines can be confidently predicted such that proactive maintenance can
be scheduled to minimise downtime.

However, the data available to train such models - though large in quantity - are
privately sensitive in nature and often exist in silos. Hence, access to these data
remains a key hurdle to unlock their true potential in improving operational efficiency
and reducing resource wastage.

To tackle this, the concept of federated learning was introduced in recent years to
leverage the vast pool of data to train predictive models whilst preserving privacy.
In this report, we show how federated learning can be practically applied using
open-source packages in Python to predict the remaining useful life of turbofan
engines.

Specifically, we applied two separate federated learning packages - FATE and dc_federated
- and demonstrated the impact of balanced and imbalanced data sets on the perfor-
mance of these models. We compared the results with baseline centralised models

to show that despite the privacy preserving nature of the federated models, they are
able to offer comparable predictive performance as centralised models.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Predictive Maintenance

The main concept of Predictive Maintenance (PdM) is the constant monitoring of
key operational indicators of equipment or machinery and using data gathered to
estimate its Remaining Useful Life (RUL) [1]. This allows for just-in-time maintenance
which reduces unnecessary production downtime due to excessive maintenance.
Inefficiencies and wastage are also minimised as machinery are maintained in an
optimal condition before any significant degradation affects production quality.

To enable predictive maintenance, data are often collected throughout the manu-
facturing process using sensors attached to machines which communicate with a
central server to transmit critical measurements such as humidity, temperature, power
consumption, air pressure and air flow [2]. These sensors are part of a network of
interconnected devices also known as Industrial Internet of Things (IIoT).

ITIoT aim to create a web of connected smart machinery capable of recording large
amount of data. These data will then be fed into a series of analytic pipeline with
the ultimate goal of optimising key PdM performance indicators such as minimising
wastage and increasing throughput [3] via maximising equipment uptime.

The use of IIoT for PAM is not new and have been executed with great success.
Niyonambaza et al. [4] proposed a PAM structure implemented using IIoT to predict
the impending failure of medical equipment in Rwandan hospitals which often
practice corrective maintenance. Such maintenance regime happens after a failure
has occurred which led to long patient backlogs. Their implementation was able to
predict impending failure with an accuracy exceeding 90%. Zeki et al. [5] provided a
further review of successful applications of PAM using machine learning techniques
covering equipment from wind turbines [6], photovoltaic panels [7] to turbofan
engines [8].
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1.1.2 Constraints

Availability of data

Whilst these applications often utilise machine learning techniques to great success in
predicting RUL, we observed that these have been carried out assuming that data are
easily accessible and in sufficient volume.

In reality, there exists few small and medium-sized enterprises (SMEs) that possess
the expertise and scale to monitor, extract and process big data. In the proposed PdM
structure for hospitals in Rwanda [4], data used to train the machine learning model
was collected from the largest referral hospital in Rwanda. Smaller hospitals with
fewer equipment may not have the volume of data necessary to train the same model.
The benefits of PAM would therefore be limited for these hospitals.

Heterogeneity of data

The distributed nature of the world we live in now means that data will no longer exist
in a sufficiently homogeneous large pool to enable centralised model training. This
was a problem faced by Google when attempting to perform Next-word predictions
[9]. Users’ data are always stored locally on device without a common homogeneous
pool to train a viable model.

Although public mobile text data sets can be used to train a model, the author noted
that there will be a mismatch in distribution between the training and population’s
distribution as the local training data are not IID.

Privacy

Even if data are sufficiently voluminous and highly accessible for model training,
privacy remains a key hurdle and concern when sharing data. The applications of
PdM discussed in Chapter 1.1.1 were always performed using a centralised model,
which requires full unrestricted access to the underlying training data.

For manufacturers, this presents practical challenges as data may contain sensitive
manufacturing parameters that translate into real world competitive advantage.
Hospitals are also reluctant to share data on medical equipment as these could
compromise patient confidentiality, attracting privacy lawsuits which outweigh the
benefits of PAM.

Data privacy regulations have been tightening globally, with the introduction of
China’s Cybersecurity Law (CSL) [10] in 2017, Europe’s General Data Protection
Regulation (GDPR) [11] in 2018 and India’s Personal Data Protection Bill (PDP
Bill) [12] in 2019. This general trend will only continue in future as more data are
collected in all aspects of our lives. Collaboration between individual data owners
(individual or corporate) is therefore limited to the extent that data privacy can be
preserved, without leaving the country or device on which it is stored.
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1.1.3 Federated Learning

A recent development that will overcome these issues is Federated Learning, a privacy
preserving machine learning technique. Introduced by Google in 2016 [13], federated
optimisation or federated learning as a technique was utilised to shift from a centrally
trained model to a shared model that is locally trained, such as on mobile devices,
also known as a node or worker, illustrated in Figure 1.1.

Each worker trains a local model on its own local data before the locally trained
model parameters are aggregated on a central server. The raw training data is never
accessed or communicated beyond each worker at any point in time. This technique
enhances privacy, alleviates collaborators’ concerns over privacy preservation and
offers the benefits of a scaled up machine learning model.

Step 1 Step 2 Step 3 Step 4

model-server

Central server Central server Nodes train the Central server pools

chooses a statistical | transmits the initial model locally with model results and

model to be trained | model to several their own data generate one global
nodes mode without

accessing any data

Figure 1.1: Key steps in federaeted learning [14]

The application of federated learning techniques to failure prediction in manufactur-
ing is a relatively recent advancement in the last two years. Silveria et al. [15] applied
federated learning techniques to predict springback for sheet steel materials whilst
Ge et al. [16] applied similar techniques to predict failure in a Bosch production line.

It is interesting to note that both author’s applications of horizontal federated learning
techniques required the individually distributed data sets to have homogeneous
feature space, which is also what we explored in this report. Both papers simulated a
locally distributed environment by arbitrarily splitting the sampled data into different
subsets, each representing a local private environment.

Finally, although federated learning techniques were overlaid on a range of machine
learning models, it was used to predict the occurrence of a failure event rather than
estimating RUL in the context of predictive maintenance and TTE prediction.
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1.1.4 Time-to-Event Prediction

Time-to-Event (TTE) prediction models are a central component of PAM and are often
used in manufacturing processes to predict the impending failure of a component,
also known as the event of interest. As a branch of survival analysis, the main goal is
to estimate the probability of the event occurring based on the derived event-time
distribution given data observed to date.

The application of traditional survival analysis statistical methods to preempt failure
is not new and its benefits are known with respect to manufacturing processes
that adopts a proactive maintenance regime [17]. Under this regime, maintenance
and replacement schedules can be optimised around predicted time to failure or
RUL of critical components. This minimises downtime and wastage of materials by
minimising the probability of defects occurring in raw materials.

The emergence of big data and advances in machine learning techniques for survival
analysis further augment these traditional techniques [18]. In recent years, machine
learning algorithms have been used to predict failure during electric resistance welded
tube manufacturing [19] as well as tool wear prediction [20].

This report therefore aims to further the work of Silveria et al. [15] and Ge et al.
[16] by applying TTE prediction models and survival analysis to predict the RUL of
turbofan engines using a turbofan engine degradation simulation data set published
by NASA [21] within a federated environment.

We note that Rosero et al. [22] performed a similar analysis to predict RUL via
federated learning on a similar turbofan engine data set. In their work, a single
federated neural network was modelled and they investigated the impact of different
number of workers with a balanced data set.

We propose to extend their work by employing a different federated learning algo-
rithm - Gradient Boosted Decision Tree - as well as investigate the impact of a balanced
and imbalanced split of data between three and five workers in the federated process.
We will also set up our modelling pipeline using open-source federated learning
libraries to guide future real world deployment of federated learning pipeline.

1.2 Aims and Objectives

This report aims to contribute to the practical application of federated learning
techniques in a PAM context by investigating the remaining time until the occurrence
of a specified event, under a simulated federated environment. This report will
accomplish this aim by performing the following sequentially:

1. Perform an Exploratory Data Analysis (EDA) on the NASA turbofan engine
degradation simulation data set FDOO1.
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2. Perform feature engineering to extract underlying time series trends to enhance
the performance of selected machine learning models. The post-processed data
set will then be split into three and five subsets of data to simulate data gen-
erated from individual workers for the purpose of applying federated learning
models.

3. Apply TTE prediction models on a centralised basis, without splitting the data
set. This set of centralised models is introduced in Chapter 2.1. Each model will
then serve as a benchmark to compare against the selected federated learning
model in the next step.

4. Apply horizontal federated learning approach on the selected models from step
2. The federated models will then be trained in a simulated local environment
without actually distributing and aggregating the models remotely as in a
real-world setting. The data set from step 2 will be split into balanced and
imbalanced subsets to represent different number of workers.

5. Compare and evaluate the performance of the centralised and horizontal feder-
ated models with benchmark models.

6. Evaluate and highlight issues arising from potential deployment, including
testing the accuracy of the trained model, processing bottlenecks, privacy
concerns and communication failures.

7. Propose direction for future research.

1.3 Contributions

This report contributes to the practical application of federated learning in TTE
prediction by deploying publicly available federated learning packages to a commonly
studied PdM data set. The exact contributions are as follow:

1. Show that the publicly available federated learning packages FATE [23] and
dc_federated [24] can be practically deployed across multiple machine learning
algorithms, with minimal impact on model performance.

2. Show the impact of a balanced/imbalanced data set divided into three and five
workers on model performance for both federated Gradient Boosted Decision
Tree (GBDT) and Neural Network (NN).

3. Compare and contrast two established open-source federated learning packages
- PySyft and FATE - with a focus on the difficulties in its practical deployment.

4. Highlight the key challenges and considerations for practitioners when deploy-
ing a federated learning framework, particularly in a production environment.

5. Provide specific directions for future research.
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1.4 Outcome

This report evaluated the performance of four centralised and two federated models
in the prediction of RUL for 100 engines in the NASA FD0O1 data set. The centralised
models served as a benchmark of model performance when all data is available
for training while each federated model is trained separately on a balanced and
imbalanced split of FD0OO1.
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Figure 1.2: Distribution of failure cycles in each of the models

Figure 1.2 shows a summary of the distribution of model prediction across the 100
engines in the test set while Table 6.1 shows the test RMSE obtained by each of these
models.

Kaplan-Meier (Centralised) Prediction based on the traditional Kaplan-Meier sur-
vival analysis by estimating a survival curve before deriving the mean survival time
for the entire population based on pre-processed training data.

Cox PH (Centralised) Prediction based on the traditional Cox Proportional Hazards
survival model by deriving the relationship between RUL and log-partial hazard based
on pre-processed training data.

Random Forest (Centralised) Prediction based on the random forest machine learn-
ing model by performing a regression analysis on RUL using post processed training
data.

Neural Network (Centralised) Prediction based on a neural network machine learn-
ing architecture with 3 hidden layers by performing a regression analysis on RUL
using post processed training data.

FL GBDT Prediction based on a Gradient Boosted Decision Tree model by performing
a regression analysis on RUL in a federated environment using post processed training

8
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data. This model is trained across three and five individual workers using either a
balanced or imbalanced split of the training data.

FL NN Prediction based on a neural network model by performing a regression
analysis on RUL in a federated environment using post processed training data. This
model is trained across three and five individual workers using either a balanced or
imbalanced split of the training data.

The eventual finding from our experiment is that the federated models performed in
line with centralised machine learning models despite segregation of training data
into either balance or imbalanced splits. However, we note that the federated GBDT
model performed better on a balanced data set than the federated NN model on both
three and five workers in the federated environment.

In addition, traditional survival analysis techniques performed poorly on a centralised
basis and was not well supported nor justified in implementing an equivalent feder-
ated learning model.

1.5 Outline

The following summarises the outline of the remainder of this report:

Chapter 2: Background This chapter provides the necessary background to survival
analysis and federated learning. It introduces key statistical and machine learning
algorithm to tackle the problem of predicting RUL and a summary of federated
learning algorithms.

Chapter 3: Data In this chapter, we present an exploratory data analysis of the FDOO1
data set used throughout this report. It includes the background to the data set, why
it was chosen and provides an intuitive technical understanding of each feature. More
importantly, it elaborates on the feature engineering steps taken which is critical to
model performance.

Chapter 4: Experimental Setup This chapter presents the setup on which the se-
lected centralised and federated learning models are trained. Specifically, it introduces
multiple federated learning frameworks and provides readers with an understanding
of the key components of open source federated learning packages. This chapter ends
with an in-depth elaboration of the FATE federated framework used in this report.

Chapter 5: Model Architecture Next, we introduce both the selected centralised
and federated models in detail, including the choice of hyperparameters and model
structure. Key hyperparameters for the federated learning framework are briefly
touched upon.
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Chapter 6: Results and Evaluation In this chapter, we present the results of both
centralised and federated model results based on selected performance metrics. This
set of results is compared against benchmark models.

Chapter 7: Conclusions and Future Work Finally, we conclude this report by sum-
marising our findings and provide directions for future research.

1.6 Professional and Ethical Considerations

This project relies primarily on the publicly available NASA Turbofan Engine Degrada-
tion Simulation Data Set [21]. This report and the data it relies upon does not rely
on personal data contributed by either individual or corporate participants.

The data set relied upon was provided by the Prognostics CoE at NASA Ames under the
Creative Commons Public Domain Dedication. Copying, modification and distribution
of the data under both personal and commercial purposes without requesting for
permission is also authorised under this domain.

In line with “Examination and Assessments: Academic Integrity” published by Imperial
College (version 4 - section 6.3, updated September 2018), we have also provided
relevant citations where applicable throughout the report. This includes citation to
other research and findings relied upon, technologies used as well as online resources
and code base referenced.

10



Chapter 2

Background

2.1 Time-to-Event Prediction

As a branch of survival analysis, the main goal of TTE prediction is to estimate the
probability of the event of interest occurring based on the derived event-time distribu-
tion given data observed to date. This is often performed using traditional statistical
methods according to a survey by Wang et al. [18] although recent advancements in
machine learning techniques have introduced complementary methods for survival
analysis. The full taxonomy of methods available in survival analysis is shown in
Figure 2.1 [18].

2.1.1 Statistical Methods

Here, we will provide a primer on well established statistical methods for survival
analysis. These methods can be generally categorised as non-parametric, semi-
parametric and parametric methods.

2.1.1.1 Kaplan-Meier Estimator

The most commonly used non-parametric survival analysis is the Kaplan-Meier es-
timator or the Product-Limit estimator [25] which is used to estimate the survival
function S(t) based on observed data up to time ¢ without assuming any underlying
parametric distribution.

For a set of N instances, let T, T, ... , Ty be the set of independent, identically
distributed variables where T; (j < N)is the random time when the event of interest
occurred. This event of interest could either be when the instance was censored
or that the event has occurred. Censoring occurs when the instance is no longer
observed within the time interval of the data or that the event of interest occurred
either before or after this time interval. The survival function S(¢) can then be defined

11
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Chapter 2. Background

Methods
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Figure 2.1: Taxonomy of methods developed for survival analysis [18], with the addition
of Federated Learning
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as:
S(t) = Prob(T > t|T >t —1)Prob(T >t —1) (2.1)

which intuitively translates to the probability of an instance surviving beyond the
current time period ¢, given that it has already survived up to time ¢t — 1. Continuing
from Formula 2.1, we can obtain a recursive relationship of S(¢) as:

S(t) = p)S(t —1) (2.2)

where p(t) = 1 — Prob(T = t|T > t) which represents the proportion of instances
surviving in the time interval ¢. Based on this recursive relationship, the Kaplan-Meier
estimator at any given time ¢ can then be derived as:

s(t) = [T »() 23)

Whilst the Kaplan-Meier estimator is simple to implement, it has multiple drawbacks
in the context of failure or RUL prediction. The first of which is its limited application
for multivariate analysis [26], where failure prediction is often interested in the
correlation between multiple variables such as temperature, pressure and coolant
volume and how it affects the probability of failure.

Another major pitfall is the decrease in accuracy of survival estimates as the proportion
of censored data increases. This effect is compounded for a small dataset, since the
survival estimate is now derived empirically from a smaller volume of data and could
be easily distorted by outliers [27].

Finally, the Kaplan-Meier estimator does not lend itself well to analysing the impact
of continuous variables [28] on survival rate, which is necessary when analyzing
manufacturing data. Comparison of survival estimates under Kaplan-Meier is usually
performed using the log rank test [27] which requires survival estimates to be placed
in discrete buckets.

2.1.1.2 Cox Proportional Hazard Model

The Cox proportional hazard (Cox PH) model [29] is the most common model used
for semi-parametric survival analysis [18]. The main idea supporting the Cox model
is that all instances in the analysis have the same hazard function, which is defined as

L Prob(t <T <t+AUT >t)  f(1)
(D) = i, At G o

where S(t) is defined in Formula 2.1. Since f(¢) is the probability of the instance 7’
encountering the event in the period ¢ to t + dt given it has survived up to ¢ and S(¢)
is the probability of survival up to ¢, the hazard function represents the instantaneous
rate at which the event occurs at time ¢. Note that f(¢) is also equal to 1 — S(¢).

13
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The Cox PH model can then be defined by modelling the hazard function h(t|X = x)
for a given set of covariates, which is represented as a vector « with  being the
corresponding coefficient vector of x:

h(t| X = x) = ho(t)exp(x” ) (2.5)

ho(t) is the baseline hazard function, that is used to compute the hazard function for
all instances. The Cox PH model is a semi-parametric model because the underlying
distribution of hy(t) is not required to be known to estimate . The predicted
hazard function is then the product of h((t) and exponential function of the linear
combination of the covariates and its coefficient. The effect of this linear combination
stays constant throughout time. The cumulative hazard function H (¢) for the same
covariate z can then be defined as:

H(t|m):/0 h(u]x)du:/o giyé))du: i %ﬁy)du:—logS(ﬂx) (2.6)

This further allow us to derive the conditional survival function as:
S(tlz) = exp(—H(t|z)) = Sy(t)=="? (2.7)

where Sy(t) is the baseline survival function. The estimation of the coefficient of
covariates given a set of covariates can be performed by maximising the partial
likelihood function which can be done trivially using statistical packages in Python.

2.1.1.3 Regression Model

Parametric models, as the name suggests, requires full parameterisation of the under-
lying distribution of survival data. All instances in the data is assumed to follow this
distribution, which could be from a family of commonly known distributions such as
normal, exponential, Weibull, logistic and log-normal. Even though knowledge of
the underlying distribution allows better intepretability of results, this is also a key
disadvantage as it may not always be possible to fit a good distribution to the data.

2.1.2 Supervised Machine Learning Methods

In this section, we will provide a primer on application of machine learning methods
for survival analysis. Similar to statistical methods, machine learning methods can
be categorised into four main types: supervised, semi-supervised, unsupervised and
reinforcement learning.

However, we will focus on supervised learning where we provide labelled training
data to the algorithm which will then map the combination of covariates to a discrete
or continuous output. The latter is particularly relevant in our context where we aim
to predict RUL which is a continuous target variable.

14
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2.1.2.1 Random Survival Forest

The first of the two machine learning methods is the Random Survival Forest (RSF),
first introduced by Ishwaran et al. [30], which leverages the Random Forest (RF)
method proposed by Breiman [31].

Decision Trees

Fundamentally, both RF and RSF are extensions of decision tree, which splits an
initial dataset into binary or multiple subsets of data (known as nodes) based on
a splitting criteria [32]. It then recursively splits these nodes based on the same
splitting criteria until the terminating condition is met. The end of the tree is then
known as the leaf node.

Several metrics exist to derive the optimal splitting rule. This includes maximising
the information gain prior and post split, minimising the Gini impurity [33] in each
child node or variance reduction. For each categorical attribute, the algorithm would
perform a split at each possible discrete partition, assess the performance of the
split based on the selected metric and select the split point which maximises (or
minimises) that metric. To do the same for a continuous attribute, the attribute has to
be discretised beforehand either by selecting a fixed value or discretising the residuals
after fitting a regression model on the data [34].

This process would continue recursively for each child node produced by the splitting
rule, until a terminating condition is met. This termination condition could be met
when all instances in a node belong to the same category, when there are no attributes
left to split, when the maximum depth of the tree has been reached or when the
minimum number of instances in the node is met [35]. In the last two cases, the
maximum tree depth and minimum number of instances in a node are known as
hyperparameters of the tree.

A test object can then be classified by applying the split rules sequentially to its
attributes and counting the majority label of the instances in the leaf node in which
the test object eventually landed in. For a continuous target variable, the output
would usually be the average or median value of the instances in the leaf node of the
trained tree. Finally, pruning is employed to deal with the problem of overfitting [36],
where the tree conforms well to training data but performs badly on unseen test data.

Random Forest

Random Forest is then a combination or ensemble of decision trees, constructed
by introducing randomisation in two ways. First, the parent node of each tree
is generated through a process known as bagging [37], where new datasets are
generated by randomly sampling with replacement from the original dataset. Second,
an optimal split rule is chosen from a random subset of attributes, instead of selecting
from the full set of attributes as in a decision tree.
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As a result, multiple trees can be generated from the original dataset and classification
can be performed by taking the majority vote across all the trees generated. For a
continuous target variable, the output will usually be the average value [35] of the
target variable across the selected leaf nodes in the ensemble.

Random Survival Forest

RSF extends RF by basing the splitting criterion on the survival function, where
each node is split into the children node such that it maximises the difference in
survival function between each child. Survival function here is obtained from the
Kaplan-Meier estimator as defined in equation 2.1.

Hence, successive recursive splits of each node will lead to increase within-node
homogeneity and eventually the leaf node will comprise of instances with similar
survival.

RSF can be implemented by utilising one of four commonly used split rules - log-
rank splitting rule [38], conservation-of-events splitting rule, log-rank score rule or
random log-rank splitting rule. According to findings by Ishwaran et al. [30], RSF
implemented using log-rank splitting rule and log-rank score rule results in the lowest
prediction error.

2.1.2.2 Artificial Neural Network

Application of Artificial Neural Network (ANN) in the context of survival analysis
has been well researched in various fields, such as in the medical field [39] [40] and
in finance [41]. According to Wang et al. [18], there are three main methods that
neural network based techniques can be adopted for survival analysis:

1. Employing a neural network to directly predict the survival time as the output
given a set of inputs.

2. Employing a neural network to directly predict the survival probability as the
output given the survival status of the inputs.

3. Proportional hazards neural network [42] which replaces the linear combination
of the covariates and its coefficient in Formula 2.5 with the output of a non-
linear neural network, maintaining the proportionality constraint in the original
Cox PH model.

For the purpose of this report, we are interested in the application of neural network
to survival analysis by directly predicting the RUL as the output given a set of inputs.
This allows a comparable basis with the external benchmark models as well as when
federated learning techniques are applied subsequently.
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2.2 Federated Learning

2.2.1 Overview

The TTE prediction models introduced in Chapter 2.1 are usually executed as a
centralised model where the data are assumed to originate from a single trusted
source. This is often not realistic, as real-world data tend to reside in individual
walled off workers with strict data privacy protection rules that prevent them from
sharing data externally. In this scenario, centralised models are limited to the extent
that these data are available for training.

First introduced by Google in 2016 [13], federated learning offers the advantage of
access to these private data residing in individual clients without actually sharing it
with external workers. McMahan et al. [43] and Cheng et al. [44] have shown that
federated learning can offer comparable predictive performance versus centralised
models.

The general idea underlying the federated learning framework can be summarised in
four steps [44]:

1. A current global model is downloaded to the client side from the server.

2. Each client updates the global model with respect to its locally stored data. The
local data is never shared with any external worker.

3. Model updates are sent back to the server by each client. This includes model
parameters such as model weights for neural networks and information gain
metric for decision trees respectively. These updates are encrypted before
communicated to the server.

4. Server decrypts and aggregates information from each client to compute an
updated new global model. The cycle then repeats from step 1 if the model has
not converged. Else, the federated process ends here.

Federated learning can be categorised into three main types: horizontal federated
learning, vertical federated learning and federated transfer learning [45]. Horizontal
federated learning is applicable when the data across clients share the same feature
space but have different individual labelled instances in the data as shown in Figure
2.2.

On the contrary, vertical federated learning is applicable when the data across clients
share the same set of instance but with different feature space. Federated transfer
learning is then used in the scenario when both instances and feature space between
data sets of clients differ. In this report, we are only interested in the application of
horizontal federated learning as the feature space of data set obtain from turbofan
engines will be the same across each engine.
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Figure 2.2: An example of a dataset used in horizontal federated learning

2.2.2 Federated Gradient Boosted Decision Tree

The first of the two federated techniques is the Federated Gradient Boosted Decision
Tree (GBDT) which is supported by the Federated Al Technology Enabler (FATE) open-
source Python package, an open-source project initiated by WeBank’s Al Department
[23]. We discuss the use of these packages in greater detail in Chapter 4.

Federated Forest

Federated forest was first proposed by Liu et al. [46] as a federated alternative of
random forest proposed by Breiman [31], focusing on vertically partitioned datasets,
where Liu et al. has shown through a series of experiments that their proposed
algorithm produces a similar level of predictive accuracy as the centralised random
forest equivalent.

Although the exact application of federated forest to vertically partitioned datasets
is not relevant in the context of this report, Vaidya et al. [47] has further shown
that application of a similar privacy-preserving random decision tree algorithm to
horizontally partitioned datasets yields comparable accuracy to a centralised model.

However, it was noted that the result came with significant computational costs
and according to Kholod et al. [48], the only available package present to perform
federated decision tree is provided by FATE.
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Federated Gradient Boosted Decision Tree

FATE currently supports multiple federated equivalent of commonly used machine
learning algorithms such as tree-based and neural network algorithms. Specifically,
FATE’s Homo SecureBoost API trains a global GBDT on data with the same set of
feature space held locally and privately by individual workers. Homo SecureBoost
relies on the histogram-based split finding algorithm [49] to find the optimal split
rule for a particular node and aggregates them in five steps:

1. Each client computes a histogram of gradients for each feature k, considering
only a subset of values in each feature as potential split points

2. For each histogram created, the server performs secure aggregation by adding
a different random number for each client such that it cancels out when ag-
gregated. This allows the server to obtain the global sum while maintaining
privacy

3. With the complete set of updates from each client, the server can then derive
the global optimal split rule and communicate it back to the clients. The global
optimal split is selected by maximising/minimising the selected metric such as
information gain or Gini impurity

4. Clients will receive the optimal split rule and construct the next layer in the tree.
Each client will never have information on the individual split rule proposed by
another client. If terminating conditions are not met, the cycle will repeat from
step 1

5. If terminating conditions are met such as maximal tree depth or minimum
instance in a node, the fitting process is complete

2.2.3 Federated Neural Network

The Artificial Neural Network set up in Chapter 2.1.2.2 can similarly be adopted for
federated learning. This is again supported by numerous federated learning packages
such as PySyft [50], FATE [23] and dc_federated [24], both of which supports
PyTorch, a deep learning machine learning library commonly used for building neural
network architecture.

Federated Averaging

The core of a federated neural network is its aggregation algorithm which instructs
how each local neural network model parameter gets aggregated at the server while
preserving privacy. In this report, we rely primarily on the FederatedAveraging
(FedAvg) algorithm first introduced by McMahan et al. [43] which was described
as a combination of stochastic gradient descent (SGD) performed locally at each
client level before aggregating and averaged by a common server. The full FedAvg
algorithm is shown in Algorithm 1.
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Algorithm 1 FederatedAveraging [43] K is the number of workers indexed by k, B
is the local batch size, E is the number of local epochs and 7 is the learning rate

—_

T S i
Do B AR LI O el

D I A I o

: Server executes:
initialise wy
for eachroundt =1, 2, ... do

m < max(C - K, 1)

S, < (random subset of m clients)
for each client k£ € S, in parallel do
wy, | + ClientUpdate(k,w;)

end for
Wyl < Zszl Bwyy,

end for

ClientUpdate(k, w): > Run on client k
: [ < (split into batches of Size B)
for each local epoch i from 1 to E do

for batch b € 5 do
w — w — nVL(w;b)
end for

. end for
return w to server

Federated Averaging works in the following steps:

Line 1 - A central server containing the global model initialises a set of weights
wp to be communicated to individual client, if no prior training has been
conducted. Else, the current set of global model weights w;, is sent to each client

Line 7 - Using the newly received weights, each client trains the local model
using data residing locally within the client via stochastic gradient descent in
line 16. This generates a set of local model gradients

Line 9 - The set of local model gradients are then communicated to a central
server in line 19, without ever sending the underlying raw data. The server
aggregates the gradients via FedAvg algorithm in line 9 which takes the weighted
average of the gradients and uses it to update the global model weights

Line 3 - This cycle will continue until the global model converges

The application of federated artificial neural network can be adopted for any general
neural network architecture which makes it a suitable candidate for the federated
neural network architecture introduced in Chapter 5.
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Chapter 3

Data

3.1 Overview

This report relies primarily on the turbofan engine degradation simulation data set
produced by Saxena et al. [51], originally used as data in the 2008 Prognostics
and Health Management (PHM) data competition. This data was generated using
the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) tool [52],
which is an engine simulation software used to simulate large commercial turbofan
engine with 90,000 1b of thrust.

The simulation can be carried out under three possible operating conditions: (i)
Altitudes ranging from sea level to 40,000 ft, (ii) Air speed ranging from Mach O
to Mach 0.9 and (iii) Sea level temperatures from approximately 15 to 40 degree
Celsius.

The simulator can receive a maximum of 14 inputs such as fuel flow and efficien-
cy/flow modifiers for each of the critical components in the engine. These components
include the Fan, High-Pressure Turbine (HPT), High-Pressure Compressor (HPC), Low-
Pressure Turbine (LPT) and Low-Pressure Compressor (LPC). A simplified diagram of
the engine simulated is shown in Figure 3.1.

Combustor N1  LPT

Nozzle

Figure 3.1: Simplified diagram of the simulated engine [52]
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Based on the inputs provided, C-MAPSS models the engine degradation process and
generates a total of 58 different sensor outputs of which 21 were provided in the
simulation data set. For each of the sensors, a reading is captured for every unit of
time defined as a cycle. A description of the sensor output is shown in Table 3.1.

Sensor No. Symbol Description Units
1 T2 Total temperature at fan inlet °R
2 T24 Total temperature at LPC outlet °R
3 T30 Total temperature at HPC outlet °R
4 T50 Total temperature at LPT outlet °R
5 P2 Pressure at fan inlet psia
6 P15 Total pressure in bypass-duct psia
7 P30 Total pressure at HPC outlet psia
8 Nf Physical fan speed rpm
9 Nc Physical core speed rpm
10 epr Engine pressure ratio (P50/P2) -
11 Ps30 Static pressure at HPC outlet psia
12 phi Ratio of fuel flow to Ps30 pps/psi
13 NRf Corrected fan speed rpm
14 NRc Corrected core speed rpm
15 BPR Bypass Ratio -
16 farB Burner fuel-air ratio -
17 htBleed Bleed Enthalpy -
18 Nf dmd Demanded fan speed rpm
19 PCNfR dmd Demanded corrected fan speed rpm
20 W31 HPT coolant bleet Ibm/s
21 W32 LPT coolant bleed Ibm/s

Table 3.1: Summary of sensor outputs from C-MAPSS [52]

Four data sets are provided from this simulation, each representing a number of
engines simulated under different combination of operating conditions and fault
modes. For example, data set FDOO1 contains 100 engines simulated at sea level with
only one possible failure event (HPC degradation) while data set FDO0O4 contains
248 engines simulated under six different operating conditions with 2 unique failure
event (HPC degradation and Fan degradation). Table 3.2 shows a summary of each
data set.

Data Set FD0O01 FDO002 FDO0O3 FDO004
No. of engines in training set 100 260 100 248
No. of engines in testing set 100 259 100 249
Number of operating conditions 1 6 1 6
Number of failure events 1 1 2 2

Table 3.2: Summary of sensor outputs from C-MAPSS [52]
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Engines in all data sets are simulated starting from an initial operating condition
at cycle 1 with a maximum RUL, with the unit of time defined in operating cycles
of the engine. The initial condition differs between engines with varying extent of
wear and manufacturing variability. Three additional fields are provided in each data
set, representing the different initial operating settings of each engine. Hence, each
engine will encounter a failure event at different cycle in time.

Each data set is made up of a training and test subsets. Engines in the training set
are simulated until the point of failure while engines in the test set may be censored
before a failure event is encountered. The true RUL for both the train and test data
are also provided.

This report will focus on FDOO1 for both the centralised and federated models
primarily because it has only one single failure event. Restricting to a single failure
event would allow us to investigate the impact on performance of a balanced versus
imbalanced data set on federated models. The existence of two or more failure events
may mean that a balanced data set is in fact imbalanced as one worker may be
inclined towards a particular failure event versus another worker.

3.2 Exploratory Data Analysis

FDOO1 contains 100 engines, each with its own time series development of the
degradation process, documented by 21 different sensor readings. As seen in Figure
3.2, the average cycle when a failure event occurs is approximately at the 206th cycle.
There is no clear correlation between engine numbers and its useful life.

Since the unit of time is defined in terms of cycle, the RUL for an engine at the
maximum cycle will be 0. RUL is therefore defined in terms of the number of
remaining cycles until a failure event occurs.

Cycle when each engine failed

Distribution of cycle at point of failure

_____ mean failure cycle - |En-;|ire 69 failed at cyfle 362 mean 206 _
350 ° 0.0175 25th percentile: 177
b ] 50th percentile: 199
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g 300
= [ ]
o . . ® L] 00125 .
“ °
= [ ] . @ . z [l
2 250 % 0.0100 A
@ - 2 i
g o L] . . . a \
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Figure 3.2: Scatter plot of cycle at failure event (left) and distribution of cycle at is
encountered (right) in FDOO1 training data
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Figure 3.3: Operational and sensor readings for all 100 engines in FDOO1 training data
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3.2.1 Operational Settings

Six different operating conditions were simulated across the four data sets but only
one was applicable to FDOO1. As can be seen from Figure 3.3, these operational
settings offer little to differentiate between an engine that is nearing the end of its RUL
versus one that is fully functional in the near to medium term. The standard deviation
for operational settings 1 and 2 is 0.002187 and 0.000293 which is insignificant and
fluctuates wildly across cycles. Finally, operational setting 2 is a constant, providing
no useful information for RUL prediction.

3.2.2 Sensor Readings

Similarly, we can see from Figure 3.3 that sensors 1, 5, 10, 16, 18 and 19 hold
constant values that are not useful in RUL prediction. Sensor 6 fluctuates slightly
within a tight bound with no discernible trend across engines.

For the remaining sensors, we can see that there is an obvious upward or downward
trend as engines in the data set reach the end of their RUL. In particular, there is a
slight divergence in readings for sensor 9 and 14 toward the end of the cycles. It
should be noted that sensors 9 and 14 both measure the core speed of the engine as
seen in Table 3.1.

3.3 Feature Engineering

In order to improve performance of the centralised model, a series of feature engi-
neering step is performed to extract the underlying trend in the data. These steps
were first proposed by Xin Chen et al. [53] and adopted with minimal changes. The
main advantage of these steps is in their simplicity as they are reliant on established
methods such as z-score normalisation and trend regression. The extracted features
also do not lose their interpretability and relevance to the final prediction. Both
these characteristics make it easy for troubleshooting and porting over to a federated
environment.

3.3.1 Selection of Sensors

While Xin Chen et al. [53] opted to select relevant sensors by using Lasso regression,
we have chosen to rely on the Mann-Kendall trend test [54]. The Mann-Kendall trend
test is a simple non-parametric test to identify significant monotonically decreasing
or increasing trends in time series data. The obvious advantage to using the Mann-
Kendall test as opposed to Lasso regression or other methodologies test for trend is
the ease of interpretation and implementation.

The use of Lasso regression requires additional parameterization of the L1-regularisation
coefficient. In addition, Jun Wu et al. [55] relied on a composite selection criteria
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(CSC) which scored the data based on a combination of its derived monotonicity
and correlation, while Chuang Chen [56] relied on a combination of correlation and
consistency indicators. A summary of selected sensors for each of these papers is
shown in Table 3.3 which shows a general consensus.

This test is performed using the pyMannKendall [57] python package which does a
pairwise comparison of a sensor’s mid-range reading at cycle 7" with all other readings
subsequent to cycle 7. Let z1, o, ..., x,, represent data points in an ordered time series
where z; represents a sensor reading at time j. The Mann-Kendall statistic (S) is then
given by:

n—1 n
S = sign(z; — xy) (3.1
k=1 j=k+1
where
1, ifz;—2,>0
sign(xz; —x) =40, ifx; —x,=0 (3.2)

-1, ifz;—x, <0

The result of the Mann-Kendall test is shown in Figure 3.4 where sensors 7, 12, 20 and
21 returned a high negative value which is indicative of a monotonically decreasing
trend. Sensors 17, 3, 13, 8, 2, 15, 4, 11 returned a high positive value which indicates
the opposite. Similarly, sensors 14, 9 and 6 showed a slight increasing trend of a
smaller magnitude. This result makes intuitive sense as it aligns with the general
observation in Figure 3.3.

Thus, 12 sensors - 2, 3,4, 7, 8,11, 12, 13, 15, 17, 20 and 21 - are selected based on
the Mann-Kendall test to be used in predicting RUL in FDOO1. The selected sensors
are compared with results from other authors in Table 3.3 which shows a general
consensus.

Source of comparison Selected sensors Total
Xin Chen et al. [53] 2,3,4,7,8,11,12,13, 15,17, 20, 21 12
Jun Wu et al. [55] 2,3,4,7,8,9,11,12, 13,15, 17, 21 14
Chuang Chen et al. [56] 2,4,7,11,12,15,17, 20, 21 9
Final selection 2,3,4,7,8,11,12,13, 15,17, 20, 21 12

Table 3.3: Comparison of selected sensors in FD0OO1
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Figure 3.4: Mann-Kendall statistic for each sensor

3.3.2 Data Normalization and Polynomial Fitting

The selected sensor data are then normalised using Z-score normalisation to scale
all sensors’ data to the same range. Again, let x4, z», ..., x, represent data points
in an ordered time series where z; represents a sensor reading at time j. Z-score
normalisation is applied to x; such that the normalised score z;" is defined as:

v Tr; — 7
= stdev(X) (3.3)

where X represents the mean of X and stdev(X) is the standard deviation of X.

Next, a 3-degree polynomial is fitted to the normalised sensor data as performed by
[53]. This helps to reduce the noise in the data, preserving the core trend as shown
in Figure 3.5.

3.3.3 Data censoring

It was shown in Figure 3.2 that the minimum number of cycles before the first failure
occurs is 128. This suggests that a steady state exists where all engines are expected to
operate optimally before the degradation process begins. This is visualised in Figure
3.2 where sensor readings are generally stable in its steady state before taking on a
monotonically increasing or decreasing trend. Hence, RUL is capped at a pre-defined
150 cycle since predictions of RUL above this level may be spurious.
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Figure 3.5: Smoothed normalised versus original normalised sensor data for Engine 1

Artificial right censoring of the training data is also performed which removes all
sensor readings belonging to engines with a RUL exceeding a certain point. This
simulates a realistic data set where time series data may not always be captured up
to the point of failure. In this case, any sensor readings in the training data that has
run beyond its 200th [58] cycle will be dropped from the training data set.

Whilst this would remove degradation trends beyond the 200th cycle, it would mean
giving more weight to earlier degradation trend and lower fluctuations arising from
the few engines with extended longevity. This is evident from Figure 3.3 where
degradation trends beyond the 200th cycle are more spread out.

3.3.4 Feature Extraction

The re-engineered data is now prime for feature extraction. As proposed by Xin Chen
et al. [53], two sets of feature - mean and trend - will be extracted per sensor data.
However, sensor data for each engine must first be sliced into individual windows
before the features can be extracted from each window.

This slicing mechanism is dependent on the variable length L which defines the size of
each window and stride K, which defines the amount of overlap between consecutive
windows.

28



Chapter 3. Data 3.3. FEATURE ENGINEERING

Thus, for an ordered time series with n data points as defined for equation 3.1, the
number of windows is formally defined as:

n—L+1
Wik = | K ] (3.4
Window 2

r
Stride K=3 1
| LengthL =10

I

X1 X2 | X3 [ X4 | X5 | X6 | X7 | X8 | Xo |X10|X11 | X12[X13

—
Window 1

Figure 3.6: Illustration of the slicing mechanism

This mechanism is illustrated in Figure 3.6. In this report, the choice of length L
is set as 20 and stride K is also set as 20. There will therefore not be any overlap
between consecutive windows. Given any single window slice w; = xg, x1, ...,z in
the time series data of an engine, its mean is then calculated as the average value of
the smoothed normalised reading:

mean,, = — Z T (3.5)

Trend is then defined as the regression coefficient derived from the time series linear
regression of w; where the target variable is each of x, x1, ..., z;, with the independent
variable being time defined in cycles:

where f3; is the regression coefficient for w;. Finally, the RUL for each window is
simply set equal to the RUL for the last time series data in that window.
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3.4 Federated Data Sets

Federated learning is applicable when there are multiple independent workers with
isolated pools of private data. These pools of federated data can take the form of
either a horizontal or vertical data set.

A federated data set is said to be horizontal if the individually distributed data sets
have homogeneous feature space as shown in Figure 2.2. This means that uniquely
identifiable data points across each pool share the same features. FDOO1 fits the
definition of a horizontal data set, since all engine trajectories share the same number
of sensor output.

A precursor to simulating and testing a horizontal federated learning model is there-
fore access to multiple sets of data with the same feature space across unique samples.
In the context of this report, we are interested in splitting both train and test sets of
FDOO1 into three and five sub data sets, each of which contains engines that have a
similar degradation process.

The technique chosen to perform this split is time series hierarchical clustering using
Dynamic Time Warping (DTW) as the distance metric [59]. DTW performs a pairwise
comparison of data points in two time series to derive the extent of similarity (or
difference) between each sequence.

It can be applied to time series of varying length but aligned in terms of time, as is
the case in FDOO1. For our purpose, clustering is performed on the extracted trend
feature from Chapter 3.3.4. The result of the clustering is shown in Figure 3.7 where
each of the 100 engines are allocated to a cluster.

Three general clusters can be seen from this exercise which forms the basis of the
split of FDOO1 into three imbalanced federated train data sets of size 85, 13 and 2
respectively.

Figure 3.8 shows the difference in trend between the 3 clusters. In addition, a
balanced train and test data set was also prepared by randomly assigning 34, 33 and
33 engines to workers A, B and C respectively.

The same steps were then reapplied to arrive at five splits of data for five workers on
both an imbalanced and balanced basis. This resulted in a balanced data set of 20
engines and an imbalanced train data set of 1, 1, 13, 5 and 80 engines respectively.
Appendix A shows the dendrogram and trend clusters under the five workers split,
similar to Figure 3.7 and 3.8.

30



Chapter 3. Data

3.4. FEDERATED DATA SETS

0.020

0.0151

Distance

0.010

0.005 4

0.000

68 83 47 (3) (2) (2) (2)

1

2) 2) 12 (2) (3) (10) (3) (8) (3) 69 (2) (2) (3) (4) 24 (4) 2

Engine number or (Cluster size)

(2) (5) (9) (9) (10)

Figure 3.7: Dendrogram of 3 allocated clusters for 100 engines in FD0OO1 (root colour
(green, purple, orange) represents each of the 3 clusters)

Sensor 2

Sensor 3

Sensor 4

Sensor 7

0.04 4

0.02 4

0.00 1 =

Trended sensor readings

0.06 4

0.04 4

0.02 1

0004

0.06

0.04 4

~tooz {7

0.02

0.00 1

Sensor 8

Sensor 11

Sensor 13

0.06
006 4
£
= 0.04 |
U004 :
&
g 002: 0.02
H
h=]
] 3 i
c 0004 0001 =
o
=
-0.02 T T T T T T T T T T T T —0.02 -
2 4 & 8 10 2 4 & 10 4 & 8 10
Sensor 15 Sensor 17 Sensor 20
006
n
g 0.00
T 0044 .
1
o
= % #
3 002 ~ 1002 A ooz
= N,
B N
b=l 4
£ 000 Lo0a | Lo.os Cluster 3
5 Cluster 2
= —0.02 lo.0z — Cluster 1
T T T T T : T T T T T T T T T T T T T
2 4 & B 10 2 4 & 10 4 B B 10 2 4 & B 10
Windows Windows Windows Windows

Figure 3.8: 3 allocated trend clusters for each of the 100 engines in FDOO1

31




Chapter 4

Experimental Setup

4.1 Introduction

Introduced by Google in 2016 [13], federated optimisation or federated learning as a
technique was utilised to shift from a centrally trained model to a shared model that is
locally trained on mobile devices. The trained model parameters are then aggregated
on a central server which never accesses the raw training data. This technique
enhances privacy, alleviates collaborators’ concerns over privacy preservation and
offers the benefits of a scaled up machine learning model.

Since then, the application of federated learning techniques to failure prediction in
manufacturing has made several advances in the last two years. Silveria et al. [15]
applied horizontal federated learning techniques to predict springback for sheet steel
materials whilst Ge et al. [16] applied both horizontal and vertical federated learning
techniques to predict failure in a Bosch production line.

4.1.1 Previous Studies

Federated learning has also been applied in the context of the turbofan engine
degradation simulation data set used in this report. Rosero et al. [22] deployed a
traditional three layers feed-forward neural network under both a centralised and
federated basis to compare the performance of two key federated learning algorithm -
Federated Averaging (FedAvg) and Federated Proximal Term (FedProx) in estimating
RUL. The use of FedProx is beyond the scope of this report.

Although Rosero et al. applied federated learning to the turbofan engine data set, it
was performed in a theoretical simulated mode without the use of publicly available
federated learning frameworks to investigate the difference between FedAvg and
FedProx algorithm. There was also no comparisons to the model performance of
other established centralised models with respect to this data set that would have
provided an understanding of the performance drawback of a decentralised model.
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4.1. INTRODUCTION

Lau [60] on the other hand demonstrated a proof of concept (POC) using PySyft [50]
and Pygrid [61] for deploying and training machine learning model on edge devices
in a federated environment. Edge devices in this case are represented by individual
turbine engines with the aim of estimating RUL of each engine as they operate.

This POC showed that deploying a decentralised model is plausible but went no
further to discuss implementation challenges and comparison of model performance.
Table 4.1 shows a summary of previous studies on this data set as well as the gaps
that are covered in this report.

Papers

Model

Summary

Chen et al. [53]

Wu et al. [55]

Chuang et al. [56]

Chu et al. [62]

Rosero et al. [22]

Lau [60]

Random Forest

Deep LSTM

Hybrid SVR/LSTM

Hybrid CNN/LSTM

Fed MLP

Fed LSTM

Applied a series of feature engineering steps to
improve model performance which is adopted in
this report

Showed that a computationally efficient cen-
tralised RF model can perform on par with other
more advanced models

Introduces a novel Deep-LSTM model to predict
RUL on a centralised basis and showed that it
can perform on par with other more advanced
models

Model is optimised via grid search to arrive at
an optimal layer and neuron number

Introduced a hybrid model with a specific loss
function to perform risk-averse RUL predictions,
which penalises predictions that occur after the
true failure cycle more

Performed on a centralised basis

Proposed a hybrid centralised model that outper-
forms most other advanced models

Showed that the performance of federated mod-
els using FedAvg and FedProx aggregating algo-
rithm is on par with its centralised counterpart
Showed that FedAvg converged faster than Fed-
Prox but with higher uncertainty

Evaluated the impact on number of workers on
the performance of federated models using only
a balanced data set

Does not discuss how the federated learning pro-
cess was implemented and can be deployed

Simple proof of concept using PySyft
Only applied FedAvg algorithm
No formal results analysis

Table 4.1: Summary of previous studies (Red highlights gaps covered in this report)
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4.1.2 Aims of Experimental Setup

The aim of our experimental setup is to enable us to address some of the gaps in
previous studies and provide another perspective to practically deploying a federated
learning environment. More specifically, the setup should:

1. Be comparable with previous benchmark studies on the same data set using the
same scoring criteria

2. Demonstrate the practical deployment of another publicly available federated
learning package, in addition to the POC performed in [60]

3. Highlight the key steps and considerations for practitioners when deploying a
federated learning framework, particularly in a production environment

4.2 Benchmark Models

In order to understand the effectiveness of a federated model, we first need to
establish benchmark models and metric which will allow us to compare our model
performance. These benchmark models are trained, optimised and tested on the
same FDOO1 engine degradation data set across a wide range of model complexity.

A summary of these models and the associated metric is shown in Table 4.2. Of these
morels, there is only one previous study [22] on the performance of a decentralised
model on data set FDOO1.

Source of comparison RMSE
Random Forest [53] 12.01
Deep LSTM [55] 18.43
Hybrid SVR/LSTM [56] 19.11
Hybrid CNN/LSTM [62] 13.73 - 28.64
Federated MLP (FedAvg and FedProx) [22] 20.90 - 23.92

Table 4.2: Benchmark performance on FDOO1 test data using RMSE

The selected metric is Root Mean Square Error (RMSE), which is a consistent metric
used across previous studies on the same data set:

RMSE = \/ %(RULt — RUL,)? (4.1)

In addition to the models in Table 4.2, we have also prepared baseline models using
survival analysis and simple supervised machine learning techniques discussed in
Chapter 2. These includes RUL estimation based on the Kaplan-Meier estimator,
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Cox PH model, random forest regression and a simple three layer neural network
architecture.

The rationale for these additional models is to compare traditional survival analysis
techniques and more importantly to enable a fair comparison to its decentralised
counterparts. Deploying a federated learning environment requires the support of
publicly available packages such as FATE, PySyft and dc_federated.

However, some of these packages currently support only a number of standard
aggregation algorithm such as FedAvg on which a limited number of out-of-the-
box federated learning algorithm is built. This greatly restricts the level of model
complexity that we can practically implement on a federated basis. Replicating
benchmark models such as hybrid SVR/LSTM and CNN/LSTM is therefore not possible
at this stage, without developing our own algorithm tied to a specific deployment
architecture. This is discussed in greater detail in Chapter 4.3.

4.3 Federated Learning Environment

At the point of writing this report, there are a number of open-source Python packages
that support a federated learning environment, with different levels of complexity
and documentation. These include but are not limited to:

1. Federated Al Technology Enabler (FATE) [23] framework developed by We-
bank’s Al department

2. PySyft [50] developed by Openmined

3. Federated Learning and Differential Privacy Framework [63] developed by
Sherpa.ai

4. dc_federated [24] developed by Digital Catapult
5. TensorFlow Federated (TFF) [64] developed by TensorFlow

6. PaddleFL [65] developed by Baidu

In this chapter, we will focus primarily on FATE and PySyft, which are the two most
developed and supported open-source federated learning library. They also support
industrial grade deployment with graphical user-interface to manage individual
workers which is not seen in other open-source frameworks. A more comprehensive
and detailed review of open-source federated learning environment can be found in
[48] and [66].
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4.3.1 Key Components

Although the concept of federated learning is simple, that is to train a global model
using all available data while preserving its privacy, the practical implementation
of a secure and privacy preserving federated environment from scratch is not. The
idea therefore is to rely on well defined open-source federated learning packages that
performs a combination of communication, federated modelling and coordination
tasks between each worker. This architecture is illustrated in Figure 4.1.

ettt ettt ettt ettt ettt Coordination -~
Aggregation '

@

Centralised Server

O OO o

Individual Worker 1 Individual Worker 2 Individual Worker 3 Individual Worker N

Figure 4.1: Architecture of a federated learning framework

Communication architecture is critical to ensure that each individual worker is able
to send locally trained model parameters and thereafter receive globally aggregated
model parameters. Communication between each node and the server needs to
be secure and is usually performed via HTTPS as is the case in dc_federated [24]
package. This responsibility is handled by PyGrid and FATE Flow for PySyft and FATE
respectively.

According to [48], there are two main communication setups among federated
learning systems - centralized and decentralized schemes. The former requires a
central server through which the federated learning process among the workers is
coordinated while workers in the latter are able to communicate directly to aggregate
a common global model. It should be noted that both FATE and PySyft operates using
the centralized scheme.

Federated modelling and aggregation of model parameters is the centrepiece of
any federated learning system. This is further broken down into two sub parts - the
federated machine learning model and its associated aggregation algorithm as well
as the encryption protocol.

The first determines the type of machine learning models that is supported within
the package. For example, PySyft primarily supports FedAvg aggregation algorithm

36



Chapter 4. Experimental Setup 4.3. FEDERATED LEARNING ENVIRONMENT

which enables neural network modelling supported by PyTorch [67] and TensorFlow
[68]. On the other hand, FATE supports a number of different aggregation algorithm
which in turn enables a number of out-of-the-box federated solutions of common
machine learning models such as logistic regression, decision trees, transfer learning
and K-means clustering. These are usually accompanied by the common FedAvg
aggregation algorithm or Google’s secure aggregation protocol [69].

The second part involves the encryption of modelling parameters during the process
of aggregation. Encryption is a crucial and necessary step in federated learning to
prevent adversarial attacks from both individual workers and model owner. Such
attacks include membership attacks, unintended memorisation and model inversion
attacks. The main aim of these attacks is usually to learn specific data features of a
contributing worker during the aggregation process despite the security provided by
encryption.

Details of encryption algorithm employed by each of the federated learning packages
is out of the scope of this report. However, we note that both PySyft and FATE employs
secure Multi-Party Computation (MPC) Homomorphic Encryption (HE) within its
suite of encryption techniques.

Coordination relates primarily to the practical deployment and orchestration of
federated learning activities among the various workers and the server. The ability to
do so at an industrial scale with more than a thousand edge devices is particularly
important here.

Existing open-source federated learning packages are most commonly deployed
on Linux based operating systems, with PySyft also supporting Windows, iOS and
Android mobile devices. Both FATE and PySyft enable pre-deployment simulation
mode and also actual subsequent deployment at scale, while TFF does not yet support
federated deployment [66]. Graphical user-interface is also provided by FATE through
FATE Board and PyGrid through PyGrid Admin to manage the federated learning
process.
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Chapter 4. Experimental Setup

Features

FATE

PySyft

# of commits

# of contributors

7,611 (July 2021)

50 (July 2021)

9,457 (July 2021)

362 (July 2021)

Operating Mac Mac
System Linux Linux
Windows
ioS
Android
Data Horizontal Horizontal
Partitioning Vertical Vertical
Mode Simulated Simulated
Federated Federated
ML Algorithm NN (classification only) NN within PyTorch and
Various regression models TensorFlow frameworks
GBDT
Transfer Learning
Encryption MPC Differential privacy
Protocol HE MPC
RSA HE
Diffne Hellman Key Exchange
Feldman Verifiable secret sharing
Oblivious Transfer
Deployment Docker Docker
platform Coordinated using FATE Flow Coordinated using PyGrid
Graphical Ul FATE Board PyGrid Admin

Table 4.3: Summary of comparison between FATE and PySyft [48]

4.3.2 Selected Federated Learning Framework

Both FATE and PySyft are well established open-source libraries for deploying a
federated learning environment with comparable features as summarised in Table
4.3. Both are also supported by a core team of developers at WeBank and OpenMined
who have made continuous progress to improve, update and address issues within
each framework.

However, a key aim of our experimental setup is to be comparable with centralised
benchmark models which FATE is able to fulfil with its range of out-of-the-box
solutions, including neural networks and GBDT. While PySyft and PyGrid can offer
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a similar setup for neural network, deployment of a non-neural network based
federated learning algorithm is more complicated since only FedAvg is implemented
in the library [66].

PySyft and PyGrid provide a limited set of documentation (in the form of a README
file [50]) at the time of this report compared to FATE which makes modification of
source code to implement customised federated algorithm difficult. However, this is
expected to change given the level of support and number of developers working on
PySyft and PyGrid.

According to [66], FATE is the only open-source federated learning framework that
supports decision trees. Hence, for the propose of this report, FATE has been selected
as the default federated learning framework to implement the decentralised machine
learning model to estimate RUL.

However, as FATE’s federated neural network does not support regression task, we
have also implemented Digital Catapult’s dc_federated federated framework as an
alternative. This limitation of FATE is a major drawback to deploying FATE in a
commercial setting, despite its support for a multitude of other models.

4.3.3 Review of FATE architecture

The selected FATE [23] framework used in this report is an open-source project devel-
oped by WeBank’s Al department. Although it has a fairly extensive documentation
[70] compared with other federated learning systems at the point of writing this
report, the setup process remains convoluted.

Many of the key steps and API description are either incomplete or are mistranslated
from Chinese to English. This chapter aims to document and review the key steps in
setting up FATE under a standalone deployment setup while addressing key challenges
encountered.
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Figure 4.2: Architecture of FATE federated learning system [23]

4.3.3.1 Standalone Deployment

FATE v1.6.0 can be deployed in two ways. The first is standalone deployment, which
is used for prototyping and simulation of a federated learning environment before
actual deployment. The second is cluster deployment which supports large scale
deployment to remote machines for actual multi-party federated learning.

Standalone deployment is the focus of this report to serve as a proof of concept
of the usability of FATE. The standalone mode also acts as a precursor for future
actual deployment since the general federated learning pipeline remains the same
when transitioning to cluster deployment, with the exception of initial server and
networking setup.

Standalone deployment using Docker containers is the recommended choice. How-
ever, there is an immediate OS compatibility issue as FATE is designed to run on Unix
based machines. Remote machines with Windows operating system would not be
able to run FATE. To set up FATE for our purpose, we had to run an Ubuntu 20.04
distro via Windows Subsystem for Linux 2 (WSL2).

While this enabled us to use FATE, the use of WSL2 consumed a non-trivial amount
of memory which could be an issue for remote machines that have limited processing
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capability. The hardware setup used in this report is shown in Table 4.4.

Setup Recommended Actual

Operating System CentOS Linux release 7  Ubuntu 20.04 on WSL2
Processor 8 cores 4 cores

RAM 16GB 16GB

Storage 500GB 50GB

Table 4.4: Recommended versus actual hardware setup to deploy FATE v1.6.0

In order to execute federated learning models other than the test examples provided,
it was necessary to mount a directory on the host machine to the Docker container.
This is strictly necessary on a standalone basis so that changes to the federated models
can be made on the host machine and be subsequently accessed by the container.
Bind mount is performed by amending the “install standalone_ docker.sh” file to run
the Docker container using the following command instead:

$ docker run -d --name fate -p 8080:8080 --mount type=bind,source="$(
— pwd) "<directory-on-host>,target=<directory-on-container>,
— readonly fate:latest /bin/bash

The provided tests in FATE-test can be executed to verify that the container is correctly
set up. FATE Board, which is used to manage each federated process or jobs, should
also be available at http://<host-ip>:8080 when the container is executed.

4.3.3.2 Modelling Pipeline

According to FATE’s documentation [70], the FATE pipeline is “a high-level python

API that allows user to design, start, and query FATE jobs in a sequential manner”.

Individual pipeline components shown in Figure 4.3 can be used modularly, allowing

customisation of a single federated learning pipeline. This pipeline can then be
Training Pipeline

executed with a single command.
() Reader Evaluation )

This feature sets FATE apart from other federated learning frameworks. The modular
pipeline components allow easy customisation of federated learning processes such
as applying train/test split and one-hot encoding to federated data sets. Similar
pre-packaged functional modules are not yet available or seen in other federated

Y

A 4

h 4

HomoSecureBoost

Y

Data Transform HomoDataSplit

Figure 4.3: FATE training pipeline used in this report
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learning framework. For the purpose of this report, the HomoDataSplit component
is used to split the training data into train and validate data sets. A list of sample
components is shown in Table 4.5.

Component Description

Reader This component loads and transforms data from
storage engine so that data is compatible with FATE
computing engine

Federated Sampling Federated Sampling data so that its distribution
becomes balance in each worker. This module sup-
ports standalone and federated versions.

Feature Scale Module for feature scaling and standardization
OneHot Encoder Transfer a column into one-hot format
Homo-NN Build homogeneous neural network model through

multiple workers

Homo Secure Boosting Build homogeneous secure boosting model (GBDT)
through multiple workers

Evaluation Output the model evaluation metrics for user

Table 4.5: List of sample components used in FATE pipeline [70]

4.3.3.3 FATE Board

The executed FATE pipeline can then be tracked and managed via FATE Board, which
is a GUI that allows users to track and manage historical and currently running
jobs. Although much of its capability can also be performed via FATE’s command
line interface (CLI), FATE Board is particularly useful in standalone deployment
to prototype federated models and understand the interaction and communication
between each worker.

For example, run logs and run time for each worker in the federated process can
be accessed and viewed via FATE Board. It also provides an interactive interface for
users to examine individual components in the pipeline as shown in Figure 4.4.

In a cluster deployment scenario however, the FATE Board would potentially have
limited impact since most remote machines would not typically come equipped with
a screen through which users can interact with the GUI. The ability to manage each
worker and the federated process would then fall back to FATE’s CLI - FATE Flow,
which has a fairly well documented API [70].

42



Chapter 4. Experimental Setup 4.3. FEDERATED LEARNING ENVIRONMENT

FATEBoard RUNNING JOBS.

A > Job Overview > Dashboard > Job defail

Job Summary Outputs From Job

ob ID: Main Graph Parameter(3s)
202107270447026113376

module: H

success

nost
arty_ID: 3333

experimentnasa_A

0
20; 2.47.03
202107-27 12:47:08 datatransform_0 @
20210727 13:31:16
st homo_data_spiit 1 [Je)
004407

homo_secureboost 0 K€

IO ©

Figure 4.4: Component set up for a job ID in FATE Board
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Figure 4.6: Display of model evaluation results in FATE Board

4.3.3.4 Evaluating Results

The FATE Board also provides an early indication of the model’s performance using
the Fvaluation pipeline component which calculates metrics such as Mean Absolute
Error (MAE), R2 Score and Root Mean Squared Error (RMSE) as shown in Figure 4.6.
However, it is insufficient to rely solely on that. To enable additional analysis and
comparison with centralised models, the train and test results have to be extracted
via FATE Flow CLI using the following command:

$ flow component output-data -j <job_id> -r <role> -p <worker_id> -
— cpn <component_name> --output-path <directory-on-container>
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This outputs the predicted results for each worker to the indicated directory. This
works only on a standalone basis for all workers since each individual worker is
hosted in a common simulated container. In a cluster deployed environment, access
to predicted results would not be possible without access to the remote machine’s
CLI. Results of the federated model is discussed in Chapter 6.
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Model Architecture

5.1 Problem Statement

Before delving into the detailed model architecture selected, we first have to under-
stand the problem that we need to solve with these models. As discussed in Chapter
3, we will be attempting to model the Remaining Useful Life (RUL) of individual
turbofan engines at each cycle in their operational life. Each of the 100 individual
engine in the training set contributes a time series of sensor readings. A unit of time
is then defined as a single operating cycle.

For example, engine 39 survived the shortest before failure with 128 cycles before
failure while engine 69 survived the longest with 362 cycles before failure. The RUL
for engines 39 and 69 at their respective failure cycle is therefore 0. Similarly, the
RUL for engines 39 and 69 at cycle 100 and 300 is 28 and 62 respectively.

Hence, the objective of each model discussed in this chapter is to predict the RUL for
each engine at every cycle in time. This problem is best framed as a single dimensional
regression problem with a common RMSE scoring metric.

5.2 Baseline Centralised Models

Baseline centralised models for estimating RUL covers both statistical and machine
learning models as shown in Figure 2.1. The theoretical background underlying
these models have also been introduced in Chapter 2. Here, we will discuss the
actual architecture and parameters employed to perform RUL predictions using these
models.
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5.2.1 Kaplan-Meier

The Kaplan-Meier model involves estimating a single survival probability curve from
the entire training data set. The estimated survival probability curve is then assumed
to be representative of the population true survival curve, which includes the test
data set.

In order to estimate RUL, the Restricted Mean Survival Time (RMST) is calculated
from the survival curve, which gives the average survival time for engines in the
data set. Since the survival curve is assumed to be representative of the population,
all engines in the test data set will have the same RMST. The RUL at an engine’s
last cycle can then be calculated as the difference between the RMST and the cycle,
floored at zero. This is an over-simplified model but it serves as a good baseline
before more in-depth survival models are explored.

5.2.2 Cox Proportional Hazard

The Cox PH model first involves estimating the exponent portion of Formula 2.5 which
is known as the log-partial hazard. It is only necessary to estimate the log-partial
hazard under the Cox model to understand the relative time to failure since the
baseline hazard function is assumed to be the same across all engines.

It is important to note at this stage that the log-partial hazard itself does not give an
indication of the RUL at each cycle. Although it is sufficient in predictive maintenance
to set a threshold for the log-partial hazard before performing maintenance, additional
steps need to be taken to estimate RUL.

This is done by fitting an exponential model [58] to the relationship between log-
partial hazard and RUL. For every estimated log-partial hazard from the Cox model,
we can then re-estimate the corresponding RUL.

Similar to the Kaplan-Meier model, this set up does not lend itself well to solving our
problem statement as we will discuss in Chapter 6.

5.2.3 Neural Network

A neural network is one of the more common machine learning candidate when it
comes to solving regression problems. For our problem statement, we applied an
architecture with 16, 32 and 64 nodes in each of the three hidden layers and 1 node
in the output layer. The input layer accepts 24 features (12 selected sensors x 2
extracted feature per sensor). According to Heaton [71], two or more hidden layers
allow the neural network to learn more intricate representations of the data. A neural
network with three hidden layers was therefore selected which is sufficient to learn
the data yet not overly complex for the purpose of federated learning.

We note that this is relatively simpler than the Deep LSTM model proposed by Wu et
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al. [55] which has 5 layers with 100 neurons in each layer. The trade off of using a
simpler model is weaker predictive performance but a more efficient implementation
in a federated environment, particularly when deployed to weaker edge devices.

Relu activation function is used for each of the hidden layers and mean squared
error is selected for the loss function. This set of hyperparmeters was selected using
randomised grid search over 500 iterations.

This is a relatively simple neural network model compared to the selected benchmark
models in Table 4.2 which includes hybrid neural network models. Remote machines
running federated models are often low powered machines with limited processing
power and memory. Hence, deployment of complex multi-layered and highly opti-
mised hybrid models would usually be technically constrained. Existing federated
learning frameworks such as FATE and PySyft also provide limited to no support for
aggregating model parameters of complex models.

The selected neural network architecture is then used to estimate the RUL based
on the extracted features - mean and trend - for each window of operating cycles.
The predicting ability of this simple neural network is therefore dependent on the
extensive feature engineering steps performed as discussed in Chapter 3.3.

5.2.4 Random Forest

The random forest set up to this regression problem is equally simple. This algorithm
is based on 20 decision trees with a mean squared error loss function. The square root
function is selected as the maximum number of features to consider when searching
for the best split. Again, despite the simplicity of this model, it has one of the better
performing results as discussed in Chapter 6.

Hyperparameters Centralised Random Forest Federated GBDT
Task type Regression Regression

# of trees 20 20

Max depth None 10

Loss function MSE LSE

Max features # of features SQRT(# of features)

Table 5.1: Centralised Random Forest vs Federated GBDT Hyperparameters
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5.3 Federated Learning Architecture

5.3.1 Hyperparameters in the Federated Process

Hyperparameters in a federated environment control the overall federated learning
process. This is a set of parameters that operates at a level above the parameters of the
federated model and are more often than not dictated by the federated environment.
This can include the following:

1. Number of workers involved in each round of aggregation
2. Number and homogeneity of data points in each worker’s data set

3. Number of aggregation rounds between the local and global models

The number of workers involved in our experimental setup is initially fixed at three
workers. This is based on practical consideration of our machine’s ability to handle
significantly more workers, especially when simulating using FATE. Without actually
deploying federated learning in a production environment, it is difficult to simulate a
large number of federated workers due to hardware constraints.

We have therefore tested the impact of variation in the number and homogeneity of
data points in each worker’s data set on the federated learning process. This was
possible by splitting FDOO1 train and test data set into three sets via time series
clustering and randomised equal split as discussed in Chapter 3.4.

Based on the initial set of results, we then replicated the entire federated learning
pipeline but for five workers to validate our findings.

5.3.2 Federated Models

The selection of federated learning models is primarily restricted by the support
provided by federated learning frameworks discussed in Chapter 4.3. Whilst PySyft
provides support for neural network based architecture with a FedAvg aggregation
algorithm, FATE provides a wider range of federated models, including neural net-
works, various regression models and the selected gradient boosted decision tree
(GBDT).

Gradient Boosted Decision Tree

FATE’s GBDT or Homogeneous Secureboost supports both classification and regression
tasks and is well suited for our problem statement. The theoretical background of the
secureboost aggregating algorithm is discussed in Chapter 2.2.2.

For the purpose of training the model, the training data set is split into train and
validation sets based on a 60/40 proportion, using FATE’s HomoDataSplit pipeline
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component. A set of hyperparmeters was then selected using randomised grid search
over 100 iterations.

The final GBDT model is based on 30 decision trees each with a maximum depth of 5
splits and optimised using a learning rate of 0.11. The maximum depth in this case
determines the number of aggregation rounds with the server.

Each individual worker to the federated environment will have access to the same
model setup and subsequently train and share a local model before receiving globally
aggregated model parameters. Prediction of local test data set will then be performed
using these aggregated global parameters.

Hyperparameters Centralised NN Federated NN
Task type Regression Regression
Hidden layers 32/64/128 64/128/256
Activation Function  relu sigmoid
Learning rate 0.2 0.03

Loss function MSE MSE
Optimiser Adam Adam

Table 5.2: Centralised NN vs Federated Neural Network Hyperparameters

Neural Network

As FATE’s federated neural network supports only classification task, it is not possible
to utilise the FATE framework to predict RUL via regression. Hence, Digital Catapult’s
dc_federated framework was selected for this purpose. However, it is not possible to
take advantage of FATE’s modularity and GUI as dc_federated is an entirely separate
framework from FATE.

Similar to GBDT, a randomised grid search was performed to select the optimal
hyperparameters. This resulted in a simple 3 layer neural network with 64, 128
and 256 nodes per layer with Sigmoid activation function in each hidden layers. A
learning rate of 0.03 with 12 rounds of iteration per aggregation.

A round of aggregation is defined as receiving the global model update, retraining
the local model parameters and communicating the updated local model parameters
to the server.
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Chapter 6

Results and Evaluation

6.1 Summary of Aggregate Test Results

Models Test RMSE Test MAE
External Benchmark Models

Random Forest [53] 12.01 not available
Deep LSTM [55] 18.43 not available
Hybrid SVR/LSTM [56] 19.11 not available
Hybrid CNN/LSTM [62] 13.85 9.44

Fed. MLP (FedAvg/FedProx) [22] 20.90 - 23.921 16.41 - 18.701
Selected Centralised Models

Kaplan-Meier 31.86 19.74

Cox PH 36.95 30.82
Random Forest 16.63 12.24
Neural Network 20.80 15.42

Selected Federated Model - 3 workers

Fed. GBDT (imbalanced data split) 23.36 18.07
Fed. GBDT (balanced data split) 19.15 13.81
Fed. NN (imbalanced data split) 17.37 13.21
Fed. NN (balanced data split) 20.74 14.82
Selected Federated Model - 5 workers

Fed. GBDT (imbalanced data split) 25.32 19.89
Fed. GBDT (balanced data split) 17.58 13.03
Fed. NN (imbalanced data split) 19.28 14.88
Fed. NN (balanced data split) 20.47 14.61

Table 6.1: Summary of model results on FDOO1 test data (except for Fed. MLP)

1Results from this model are based on FD004 data set which contains engines ran under different
operating conditions. The range of result is due to different number of workers used.
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Figure 6.1: Comparison of FD0OO1 test RMSE

SN T- 90 Table 6.1 shows the RMSE performance of external benchmark models and
selected centralised /federated models that were run as part of this report. This measures
the difference between the predicted RUL and true RUL for each engine.

All results in Table 6.1 were computed based on FD0O1 test data. The only exception to
this is Fed. MLP which was performed on FD004 but included in the table as it is the only
federated learning literature on this data set.

The simpler selected centralised machine learning models performed within range of the
external benchmark models with an RMSE of between 16 and 23. However, the statistical
based survival models performed poorer with a RMSE exceeding 30.

In general, federated models performed in line with centralised models as shown in Figure
6.1. From Table 6.1, we can also see that Federated GBDT performed better than federated
NN on the balanced data set while the contrary was true for the imbalanced data set in
both the three and five workers scenarios.

Overall, the results suggest that the federated GBDT model is more suited when the data
set is balanced and more spread out as it is the best performing model in the five workers
scenario while the federated NN model is more suited when the data set is imbalanced
and concentrated. Additional discussion can be found in Chapter 6.2.2.1 (Finding 4) and
Chapter 6.2.2.2 (Finding 5).

6.2 Analysis of Results

Here, we would review the results from both the centralised and federated models, making
comparisons to external benchmark models where applicable.

6.2.1 Centralised Models

6.2.1.1 Statistical Models

As noted in Chapters 5.2.1 and 5.2.2, both the Kaplan-Meier and Cox PH models required
additional assumptions in order to predict RUL, which contributed to a poorer test RMSE
performance compared to the machine learning models.
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Figure 6.2: Survival curve from Kaplan-Meier model (left) and log-partial hazard plot
for Cox PH model (right)

For the Kaplan-Meier model, we were able to obtain a survival probability curve shown
in Figure 6.2 that is representative of the entire training data set. Although this provides
a high level view of the probability of survival for an engine at each cycle, it does not
generalise well to predict RUL.

Different engines in the data set have different variations of this survival curve. The RMST
estimated from this curve is at the 206th cycle, suggesting that engines in this population
would fail at this cycle on average. Using a single average failure cycle to estimate RUL
would clearly lead to equally under and over prediction of actual RUL.

Despite the limitations however, the test RMSE of the Kaplan-Meier model is 31.86. This
would serve as a good average benchmark for comparison going forward.

Similarly for the Cox PH model, we were able to obtain a prediction of the log-partial
hazard for each engine, which can be used as a relative indication of impending failure [58].
Engines with a higher actual RUL have a relatively higher log-partial hazard as shown in
Figure 6.2.

However, it was necessary to model the relationship between log-partial hazard and RUL
to enable prediction of RUL. This was performed by fitting an exponential curve to the
relationship in Figure 6.2 with a low R-squared value of -0.04. Based on predictions from
the fitted curve, we obtained a test RMSE of 36.95 which was worse than the Kaplan-Meier
model.

STl [[3V-@*8 Both these results showed that while it is technically possible to estimate RUL
using statistical models, the strength of the model is very much dependent on the additional
layer of assumption to arrive at useful RUL prediction.

Generally, these two models are applied to subjects belonging to the same study group and
hence exhibit similar survival deterioration with time, usually in a medical setting. Statistical
differences in survival time are often compared between groups using the log-rank test while
TTE for prediction via RMST s usually reserved as an intuitive metric to communicate
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remaining survival time [72].

Hence, statistical methods - including Random Survival Forest - remains limited in the
context of predicting RUL for turbofan engines. This is also the primary reason why
federated survival models were not explored further in this report.

6.2.1.2 Machine Learning Models

Both the centralised Random Forest and Neural Network models obtained average
performance when compared with external benchmark models. The performance of these
models is largely attributed to the feature engineering performed. These centralised models
obtained a test RMSE of 27.80 and 24.77 respectively for RF and NN without feature
engineering performed. Hence, the simplicity and acceptable test RMSE performance of
these models suggests a potential application on a federated basis.
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Figure 6.3: Comparison of RUL prediction on FDOO1 test set. “Bal” refers to the use of a
balanced data set while “Imbal” refers to the used of an imbalanced data set. Each model
is trained with based on a combination of balanced/imbalanced and 3/5 workers.

6.2.2 Federated Learning Models

6.2.2.1 Federated GBDT Model

The federated GBDT model test RMSE performance of 23.36 on the imbalanced data set
is in line with the top range of results from the set of highly optimised benchmark models
of 23.92. The construction of the balanced and imbalanced dataset is explained in Chapter
3.4.

Unsurprisingly, this result is primarily driven by the worker with the largest data set which
has a test RMSE of 26.58. The corresponding combined train RMSE on the imbalanced
data set is 10.83. The distribution of RUL prediction is largely in line with actual RUL as
shown in Figure 6.3.

When trained on the balanced data set, the federated GBDT model improved its performance
with a test RMSE of 19.15 from 23.36. This result was achieved on the same model
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hyperparameters obtained from the imbalanced data set. This suggests that a balanced
data set offers better prediction performance than an imbalanced data set for the GBDT
model.

Feature importance

In terms of feature importance, the trend feature for sensor 4 and 17 ranks
among the top three under both the gain and split measure as shown in Figure 6.4. As
shown in Table 3.1, sensor 4 measures total temperature at the LPT outlet while sensor 17
measures the bleed enthalpy.

The split measure counts the number of instances a specific node utilises a feature as
a criteria while the gain measure is the cumulative decrease in a node's impurity using
information gain criteria when splitting using a specific feature.

Performance on balanced data set

We then repeated our experiment with 5 individual workers in the federated
environment. Again, the GBDT model obtained the better test RMSE performance of
17.58 on the balanced dataset and also outperforms the model in the 3 workers setup. This
suggests that the GBDT model is not only suited on balanced dataset, but also when there
is a higher number of workers contributing to the tree building process.
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Figure 6.4: Feature importance by information gain (top) and split (bottom). 4t refers
to sensor 4’s trended reading while 2m refers to sensor 2’s mean sensor reading.

6.2.2.2 Federated Neural Network Model

The federated NN model trained on the imbalanced data set obtained a test RMSE of
17.37 which is at the higher end of results from the set of highly optimised benchmark
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Figure 6.5: 21st decision tree (left branch only) trained on imbalanced data set

models. Similar to GBDT, this result is primarily driven by the worker with the largest data
set which has a test RMSE of 20.03.

Test RMSE for the federated NN model trained on a balanced data split is 20.74. This is
generally the average test RMSE across all three workers. This performance puts it on par

with the results obtained by Rosero et al. [22], also using FedAvg aggregation algorithm,
albeit on FDO004.

Poorer performance of imbalanced data set

In their analysis, Rosero et al. explored the impact of different number of workers (2/4/8)
while using a balanced data set across all workers. However, it was inconclusive in determining
how an imbalanced data set distribution would affect their results.

Here, we show that an imbalanced or a single concentrated data set actually
improves the performance of the federated NN model using the FedAvg algorithm. This
is also inline with the findings made by McMahan et al. [43] that models trained on
imbalanced data sets learn faster. They hypothesizes that this is due certain dominant data
sets increasing the value of each round of local training.

As discussed in Chapter 2.2.3, the FedAvg algorithm aggregates and derives a global
model weight by taking the average of the local model weights. We postulate that some
information is lost during the averaging process, leading to worse model performance for
the balanced data set.

On the other hand, the imbalanced data set is able to train a better model since the
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averaging process is weighted by the number of data points in each worker. Hence, the
dominant local model’s weight dictates the global model as well. This is evident in both
Figure 6.6 and Figure 6.7 where the RMSE progression through each aggregation round for
the imbalanced model aligns with Worker C which is the dominant worker.

However, with the number of workers increased from three to five, the FedAvg algorithm
performed poorer with a test RMSE of 19.28 versus 17.37. This further confirms that
FedAvg's model performance deteriorates as the concentration of data in a single worker
gets diluted as was the case in the balanced data set.

Number of aggregation rounds required

The train RMSE for all workers trended downwards in the first aggregation round between
the local and global models, as shown in Figure 6.6. For subsequent aggregation rounds,
the train RMSE eventually converges near the minimum RMSE by the fourth aggregation
rounds for all three workers.
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Figure 6.6: Progression of FDOO1 train RMSE for each aggregation round
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ST IIiT- WA This suggests that four aggregation rounds was sufficient to train the model.
It is also interesting to note that the imbalanced data set sufficiently converged by the
second aggregation round while the imbalanced data set required at least four rounds.

This was expected as 85% of engines is located in one worker in the imbalanced data set.
This concurs with the observation in [43] where the time taken for their neural network
model to converge using the FedAvg algorithm on the imbalanced data is approximately 7
times faster than for the balanced data.

The development of FD0O01 test RMSE in Figure 6.7 shows a similar downward trend as
the local models are aggregated. The combined trend for the imbalanced data set closely
resembles Worker C which has the largest number of engines. Again, we observe that the
test RMSE converges to a minimum by the fourth aggregation round.

6.3 Individual Engine’s Results

Figure 6.8 shows a comparison of each model's RUL prediction against the actual RUL for
selected engines. Each row in this figure represents four selected engines from workers A, B
and C respectively. These engines are selected as they have also been individually featured
in [56], [62] and [55], which allows for a meaningful comparison.

The “jagged” nature of the predictions is due to the window approach taken during the
feature engineering step as described in Chapter 3.3.4. Each spike in the prediction represents
a window of size 20 cycles. Within each window, the RUL decreases by one cycle (one unit
of time) from the predicted RUL for that window.

For test engines 31, 91 and 82, the predicted RUL of all models aligns closely to the true
RUL. A commonality among these engines is their longevity which allowed sufficient cycles
for a defined degradation trend to surface. This led to better RUL predictions as we see
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from Figure 3.3 that degradation trends are more obvious nearing the end of life.

For test engines 2, 55, 78 and 25 which has an actual RUL of more than 100 cycles at the
last data point, the models’ prediction tend to diverge wildly. This is reasonable, given that
no discernible degradation trend would have emerged at that point. This also validates our

assumption to clip RUL at the threshold of 150 cycles, which explains the horizontal line in
the Figure 6.8.

Root Mean Squared Error Mean Absolute Error
Models Engine 31 Engine 82 Engine2 Engine 78 Engine31 Engine 82 Engine2 Engine 78
Selected Centralised Models
Kaplan-Meier 1.86 30.03 31.36 16.14 1.57 26.91 28.00 11.29
Cox PH 27.60 36.31 17.35 75.59 23.98 32.79 14.30 71.25
Random Forest 5.95 9.93 30.23 33.43 4.33 7.90 28.76 32.58
Neural Network 7.47 14.44 28.15 27.71 9.44 13.25 28.04 27.31
Selected Federated Models - 3 workers
Fed. GBDT (imbalanced data split) 8.08 6.83 33.87 23.48 6.12 6.10 26.86 18.75
Fed. GBDT (balanced data split) 9.59 14.00 16.76 15.37 7.94 9.01 15.29 13.56
Fed. NN (imbalanced data split) 3.44 15.37 40.43 12.82 2.56 12.07 33.18 11.64
Fed. NN (balanced data split) 10.69 25.04 41.93 16.90 9.79 18.69 40.39 15.36

Table 6.2: Summary of selected engine’s test results

Test engine 2 Test engine 16 Test engine 31 Test engine 55
160
3 . 175
e 160 150 \J\\ N
140 e I - s N
. | =~ UTRY W NS 150
120 ~ 140 N \ \{\\ PRy N 100 A
. A ) - A N N % 125
100 — | 1204 N “J ] o N
— T ~ e X 50 100
80 - 100 N S
o : 75
60 80 ~ 0
0 10 20 30 40 50 0 25 50 75 100 0 50 100 150 200 0 25 50 75 100
Test engine 38 Test engine 65 Test engine 78 Test engine 91
200
R B 200 . |
150 180
125 150 1601 -
1004 - ‘ L 140 N
NN - % | 100 S iy
75 ~ NN S| 1207 - | |
Ny
50 s 100
0 25 50 75 100 125 0 20 40 60 0 20 40 60 0 50 100 150 200
Test engine 5 Test engine 25 Test engine 46 Test engine 82
160 200 150
1401 o 180
o 100
z 120 160
140
100 } 50
a0 | 120
0 20 40 60 80 100 0 10 20 30 40 50 0 50 100 150 0 50 100 150
Cycles
—————— Actual RUL RF (Centralised) FL-NM (Imbalanced - 3 workers) FL-NN {(Balanced - 3 workers)
NN (Centralised) —— FL-GBDT {Imbalanced - 3 workers) —— FL-GBDT (Balanced - 3 workers)

Figure 6.8: Comparison of RUL for selected engines in FDOO1 test

As shown in Figure 6.8, Engine 31 was fairly well predicted by both centralised and federated
models with an average RMSE of 7.95 and 10.72 respectively. The low RMSE from
the Kaplan-Meier model suggests that Engine 31 is representative of an average engine's
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degradation in FDOO1 data set. However, Kaplan-Meier's performance for other engines
and at an overall basis suggest that this average does not generalise well.

6.3.1 Federated Models

The development of RMSE through each federated aggregation round for individual engines
in Figure 6.9 also closely follow Figure 6.6, where we can observe convergence by the fourth
aggregation round. Similarly, the balanced data set required one to two more aggregation
rounds before convergence.

Relative performance between balanced and imbalanced data sets is also determined by the
second aggregation round. We can see that where the imbalanced model performed better
than the balanced model in the second aggregation round, it remains the case throughout
the remaining federated learning process. This suggests that increased aggregation frequency
cannot compensate for poor model performance due to imbalanced/balanced data set.
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Figure 6.9: Convergence of RUL for selected engines in FDOO1 test set
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Chapter 7

Conclusions and Next Steps

7.1 Conclusion

In this report, we have shown that a federated GBDT and NN model can perform as well
as a centralised model in predicting RUL for turbofan engines. This is despite the privacy
preserving nature of federated learning algorithm which meant that the global model would
need to be trained on segregated data sets.

This result aligns with findings made by Rosero et al. [22] that acceptable RUL prediction
performance can indeed be achieved in a federated environment, albeit on a slightly different
data set. Furthermore, we came to this conclusion by applying the GBDT model in addition
to using purely NN-based approaches and the FedAvg algorithm.

This was made possible by open-source federated learning packages such as FATE which
we evaluated and demonstrated on the turbofan dataset. We also showcased the federated
learning experimental setup using these packages in Python which would allow replication
of our published results. This was an area that was not readily apparent in other
published research which focused purely on the theoretical setup leading to
their findings.

We also discussed key limitations of FATE such as the lack of support for regression task in
neural network models and lack of documentation in certain areas. Despite these limitations,
we showed that FATE is currently the only viable non-NN based federated learning approach
that is accessible and deployable with satisfactory performance.

Finally, we showed that an imbalanced data set required additional aggregation rounds
between each worker compared to a balanced data set before convergence when using
federated NN. The imbalanced federated NN model trained on an imbalanced split of engine
data performed better than the federated GBDT model trained on a balanced split. This
suggests that the federated GBDT model is more suited for federated process where the
data is well distributed between multiple individual workers.
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7.2 Next Steps

Actual deployment

The results and findings discussed in Chapter 6 are based on the experimental setup
showcased in Chapter 4 which describes a simulated federated environment without actual
deployment of lloTs onto individual worker devices. A key limitation of this report is
therefore the inability to deploy federated learning models in a production environment.

Deployment in a real-life production environment was only technically possible by collabo-
rating with an industrial partner who have access to hundreds if not thousands of individual
workers attached to lloT sensors. Hence, a logical next step would be to productionize the
setup used in this report. Specifically, both FATE and dc _ federated are able to support large
scale development of federated learning environment although the exact implementation
details to scale up are beyond the scope of this report.

Hyperparameters in the Federated Process

As discussed in Chapter 5.3.1, hyperparameters in the federated environment control the
overall federated learning process. Although Rosero et al. [22] and this report have explored
the impact on prediction performance of varying the number of workers and of using a
balanced or imbalanced data sets, these were investigated while maintaining a balanced
data set or the number of workers constant.

We therefore propose for future research to investigate the concurrent impact of varying both
the number of workers and using a balanced /imbalanced data set to model performance and
subsequently propose mitigating alterations to the federated learning model in a production
environment.

An ideal outcome of this research is to propose a standard measure of the impact of a
balanced and imbalanced data set on the performance of a federated model. Different
federated models are impacted by this hyperparameter in different manners as we have
shown in this report. Ideally, this measure should inform users of federated models on the
ideal distribution of data between workers for specific federated models and quantify the
impact on model performance due to any deviation from the parameterized distribution.
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Appendix A

Dendrogram and trend clusters of 5
workers imbalanced split
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Figure A.1: Dendrogram of 5 allocated clusters for 100 engines in FDOO1 (root colour
(yellow, green, purple, red, orange) represents each of the 5 clusters)
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Chapter A. Dendrogram and trend clusters of 5 workers imbalanced split

Sensor 2

Sensor 7

0.04 4

0.02 4

Trended sensor readings

0.02
0.00 1

F0.02 4

Sensor 11

0.06

0.04 4

0.02 4

0.00 4

Trended sensor readings

—0.02

0.06 1

0.04 4

0.02 1

000 =

0.06 1

0.04 1

0.02 1

H0.02 1

0.00 1 =

0.06

0.04 4

0.02 4

0.00 4

Trended sensor readings

—0.02 1

0.02 4

0.00 4

F0.02 1

0.00 1

F0.02 4

| — Cluster 4

Cluster 5
Cluster 3

— Cluster 1
Cluster 2

Windows

Windows

Windows

2 4 &
Windows

Figure A.2: 5 allocated trend clusters for each of the 100 engines in FDOO1

65




Bibliography

[1]

2]

8]

[4]

[5]

[6]

[7]

[8]

[9]

Zonta T, da Costa CA, da Rosa Righi R, de Lima MJ, da Trindade ES, Li GP.
Predictive maintenance in the Industry 4.0: A systematic literature review. Computers
& Industrial Engineering. 2020;150:106889.

Kammerer K, Hoppenstedt B, Pryss R, Stékler S, Allgaier J, Reichert M.
Anomaly Detections for Manufacturing Systems Based on Sensor Data—Insights
into Two Challenging Real-World Production Settings. MDPI. 2019. Available
from: https://res.mdpi.com/sensors/sensors-19-05370/article_deploy/
sensors-19-05370.pdf, visited on 2021-05-20.

Emiliano S, Abusayeed S, Song H, Ulf J, Mikael G. Industrial Internet of Things:
Challenges, Opportunities, and Directions. IEEE Transactions on Industrial Informatics.
2018;14 (11):4724-4734. Available from: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC3932959/, visited on 2021-05-21.

Niyonambaza |, Zennaro M, Uwitonze A. Predictive Maintenance (PdM) Structure
Using Internet of Things (loT) for Mechanical Equipment Used into Hospitals in
Rwanda. MDPI. 2020. Available from: https://doi.org/10.3390/£112120224.

Zeki C, Abubakar N, Qasim Z, Orhan K, Mohammed A, Babak S. Machine Learning
in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry
4.0. Sustainability. 2020 10;12:8211. Available from: https://doi.org/10.3390/
sul2198211.

Sailendu B, R SG. Design and development of a wind turbine test rig for condition
monitoring studies. 2015 International Conference on Industrial Instrumentation and
Control (ICIC). 2015:891-896. Available from: https://doi.org/10.1109/IIC.
2015.7150869.

Timo H, Alexander J. Predictive Maintenance of Photovoltaic Panels via Deep Learning.
2018 IEEE Data Science Workshop (DSW). 2018:66-70.

Nguyen KTP, Medjaher K. A new dynamic predictive maintenance framework us-
ing deep learning for failure prognostics. Reliability Engineering & System Safety.
2019;188:251-262.

Hard A, Rao K, Mathews R, Ramaswamy S, Beaufays F, Augenstein S, et al.. Federated
Learning for Mobile Keyboard Prediction; 2019. Available from: https://arxiv.
org/abs/1811.03604.

66


https://res.mdpi.com/sensors/sensors-19-05370/article_deploy/sensors-19-05370.pdf
https://res.mdpi.com/sensors/sensors-19-05370/article_deploy/sensors-19-05370.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932959/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932959/
https://doi.org/10.3390/fi12120224
https://doi.org/10.3390/su12198211
https://doi.org/10.3390/su12198211
https://doi.org/10.1109/IIC.2015.7150869
https://doi.org/10.1109/IIC.2015.7150869
https://arxiv.org/abs/1811.03604
https://arxiv.org/abs/1811.03604

BIBLIOGRAPHY BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

of China CA. Cybersecurity Law of the People's Republic of China; 2016. Available
from: http://wuw.cac.gov.cn/2016-11/07/c_1119867116.htm.

Commission E. REGULATION (EU) 2016/679 General Data Protection Regulation;
2016. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/
PDF/?uri=CELEX:32016R0679.

of Electronics M, Technology |. Personal Data Protection Bill; 2018.
Available from: https://www.meity.gov.in/writereaddata/files/Personal_
Data_Protection_Bill,2018.pdf.

Konecény J, McMahan HB, Ramage D, Richtarik P. Federated Optimization: Distributed
Machine Learning for On-Device Intelligence. CoRR. 2016;abs/1610.02527. Available
from: https://arxiv.org/abs/1610.02527, visited on 2021-05-21.

Jeromemetronome. Federated learning process central case; 2019. Online; accessed
August 28, 2021. Available from: https://commons.wikimedia.org/wiki/File:
Federated_learning_process_central_case.png.

da Silveira Dib MA, Ribeiro B, Prates P. Federated Learning as a Privacy-Providing
Machine Learning for Defect Predictions in Smart Manufacturing. ASTM International.
2021. Available from: https://doi.org/10.1520/SSMS20200029, visited on 2021-
05-21.

Ge N, Li G, Zhang L, Liu Y. Failure Prediction in Production Line Based on Federated
Learning: An Empirical Study. Journal of Intelligent Manufacturing. 2021. Available
from: https://doi.org/10.1007/s10845-021-01775-2.

Lee J. Machine performance monitoring and proactive maintenance in computer-
integrated manufacturing: review and perspective. International Journal of Computer
Integrated Manufacturing. 1995. Available from: https://www.tandfonline.com/
doi/abs/10.1080/09511929508944664, visited on 2021-05-21.

Wang P, Li Y, Reddy CK. Machine Learning for Survival Analysis: A Survey. ACM
Computing Surveys. 2019. Available from: https://doi.org/10.1145/3214306,
visited on 2021-05-21.

Gujre VS, Anandb R. Machine learning algorithms for failure prediction and
yield improvement during electric resistance welded tube manufacturing. Jour-
nal of Experimental and Theoretical Artificial Intelligence. 2019. Available from:
https://doi.org/10.1080/0952813X.2019. 1653995, visited on 2021-05-21.

Wu D, Jennings C, Terpenny J, Gao RX, Kumara S. A Comparative Study on Machine
Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random
Forests. Journal of Manufacturing Science and Engineering. 2017.

Saxena A, Goebel K. Turbofan Engine Degradation Simulation Data Set;. Available
from: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-
repository/#turbofan.

67


http://www.cac.gov.cn/2016-11/07/c_1119867116.htm
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://www.meity.gov.in/writereaddata/files/Personal_Data_Protection_Bill,2018.pdf
https://www.meity.gov.in/writereaddata/files/Personal_Data_Protection_Bill,2018.pdf
https://arxiv.org/abs/1610.02527
https://commons.wikimedia.org/wiki/File:Federated_learning_process_central_case.png
https://commons.wikimedia.org/wiki/File:Federated_learning_process_central_case.png
https://doi.org/10.1520/SSMS20200029
https://doi.org/10.1007/s10845-021-01775-2
https://www.tandfonline.com/doi/abs/10.1080/09511929508944664
https://www.tandfonline.com/doi/abs/10.1080/09511929508944664
https://doi.org/10.1145/3214306
https://doi.org/10.1080/0952813X.2019.1653995
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#turbofan
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#turbofan

BIBLIOGRAPHY BIBLIOGRAPHY

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Rosero RL, Silva C, Ribeiro B. Remaining Useful Life Estimation in Aircraft Components
with Federated Learning. Prognostics and Health Management Conference 2020.
2020;5(1). Available from: https://papers.phmsociety.org/index.php/phme/
article/view/1228.

WeBank Al Department. Federated Al Technology Enabler. GitHub; 2019. Available
from: https://github.com/FederatedAI/FATE.

Catapult D. dc-federated. GitHub; 2020. Available from: https://github.com/
digicatapult/dc-federated.

L KE, Meier P. Non-parametric estimation from incomplete observations. American
Statistical Association. 1958. Available from: http://www.jstor.org/stable/
2281868, visited on 2021-05-21.

Jager KJ, van Dijk PC, Zoccali C, Dekker FW. The analysis of survival data: the
Kaplan—-Meier method. Elsevier. 2008. Available from: https://doi.org/10.1038/
ki.2008.217, visited on 2021-05-21.

Rich JT, Neely JG, Paniello RC, Voelker CCJ, Phil D, Nussenbaum B, et al. A practical
guide to understanding Kaplan-Meier curves. PubMed Central. 2010. Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932959/, visited on 2021-
05-21.

Bencomo T. Kaplan Meier Mistakes; 2019. Available from: https://
towardsdatascience.com/kaplan-meier-mistakes-48cd9e168b09.

Cox DR. Regression Models and Life-Tables. London Royal Statistical Society. 1972;34
(2):187-220. Available from: https://www.jstor.org/stable/2985181.

Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. The
Annals of Applied Statistics. 2008;2(3). Available from: http://dx.doi.org/10.
1214/08-A0AS169.

Breiman L. Random Forests. Machine Learning. 2001;45:5-32. Auvailable from:
https://doi.org/10.1023/A:1010933404324.

L B, Friedman RA J H Olshen, J SC. Classification and regression trees; 1984.

Laura R, Kilian S. Theoretical Comparison between the Gini Index and Information
Gain Criteria. Annals of Mathematics and Artificial Intelligence. 2004 05;41:77-93.
Available from: https://www.doi.org/10.1023/B:AMAI.0000018580.96245.c6.

Wei-Yin L. Classification and Regression Trees. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery. 2011 01;1:14 — 23,

Jehad A, Rehanullah K, Nasir A, Imran M. Random Forests and Decision
Trees. International Journal of Computer Science Issues(IJCSI). 2012 09;9. Avail-
able from: https://www.researchgate.net/publication/259235118_Random_
Forests_and_Decision_Trees.

68


https://papers.phmsociety.org/index.php/phme/article/view/1228
https://papers.phmsociety.org/index.php/phme/article/view/1228
https://github.com/FederatedAI/FATE
https://github.com/digicatapult/dc-federated
https://github.com/digicatapult/dc-federated
http://www.jstor.org/stable/2281868
http://www.jstor.org/stable/2281868
https://doi.org/10.1038/ki.2008.217
https://doi.org/10.1038/ki.2008.217
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932959/
https://towardsdatascience.com/kaplan-meier-mistakes-48cd9e168b09
https://towardsdatascience.com/kaplan-meier-mistakes-48cd9e168b09
https://www.jstor.org/stable/2985181
http://dx.doi.org/10.1214/08-AOAS169
http://dx.doi.org/10.1214/08-AOAS169
https://doi.org/10.1023/A:1010933404324
https://www.doi.org/10.1023/B:AMAI.0000018580.96245.c6
https://www.researchgate.net/publication/259235118_Random_Forests_and_Decision_Trees
https://www.researchgate.net/publication/259235118_Random_Forests_and_Decision_Trees

BIBLIOGRAPHY BIBLIOGRAPHY

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Floriana E, Donato M, Giovanni S, John K. A Comparative Analysis of Methods for
Pruning Decision Trees. Pattern Analysis and Machine Intelligence, IEEE Transactions
on. 1997 06;19:476 — 491. Available from: https://www.doi.org/10.1109/34.
589207.

Breiman L. Bagging predictors. Machine Learning. 1996;24:123-140. Available from:
https://doi.org/10.1007/BF00058655.

LeBlanc M, Crowley J. Survival Trees by Goodness of Split. Journal of the American
Statistical Association. 1993;88 (422):457-467. Available from: https://doi.org/
10.2307/2290325.

Jie H, Youngsoon K, Tejaswini M, Hun OJ, Mingon K. Interpretable deep neural
network for cancer survival analysis by integrating genomic and clinical data. BMC
medical genomics. 2019;12 (10):189-189. Available from: https://doi.org/10.
1186/512920-019-0624-2.

Bora L, Hoon CS, Hyung HJ, Sook WI, Seoree K, Won JJ, et al. DeepBTS: Prediction
of Recurrence-free Survival of Non-small Cell Lung Cancer Using a Time-binned
Deep Neural Network. Scientific Reports. 2020;10 (11):1952-1952. Available from:
https://doi.org/10.1038/s41598-020-58722-z.

BB, T VG, MS, den Poel D V, J V. Neural network survival analysis for personal
loan data. The Journal of the Operational Research Society. 2005;56 (9):1089-1098.
Available from: https://doi.org/10.1057/palgrave. jors.2601990.

Faraggi D, Simon R. A Neural Network Model for Survival Data. Statistics in Medicine.
1995;14:73-82. Available from: https://doi.org/10.1002/sim.4780140108.

McMahan HB, Moore E, Ramage D, y Arcas BA. Federated Learning of Deep
Networks using Model Averaging. CoRR. 2016;abs/1602.05629. Available from:
http://arxiv.org/abs/1602.05629.

Cheng K, Fan T, Jin Y, Liu Y, Chen T, Papadopoulos D, et al. SecureBoost:
A Lossless Federated Learning Framework. arXiv. 2019. Available from: https:
//arxiv.org/abs/1901.08755.

OpenMined. Understanding the types of federated learning; 2020. Available from:
https://blog.openmined.org/federated-learning-types/.

Liu Y, Liu Y, Liu Z, Zhang J, Meng C, Zheng Y. Federated Forest. |IEEE Transactions
on Big Data. 2019. Auvailable from: https://doi.org/10.1109/TBDATA.2020.
2992755.

Jaideep V, Basit S, Fan W, Danish M, David L. A Random Decision Tree Framework
for Privacy-Preserving Data Mining. IEEE transactions on dependable and secure
computing. 2014;11 (5):399-411. Available from: https://arxiv.org/abs/1905.
10053.

69


https://www.doi.org/10.1109/34.589207
https://www.doi.org/10.1109/34.589207
https://doi.org/10.1007/BF00058655
https://doi.org/10.2307/2290325
https://doi.org/10.2307/2290325
https://doi.org/10.1186/s12920-019-0624-2
https://doi.org/10.1186/s12920-019-0624-2
https://doi.org/10.1038/s41598-020-58722-z
https://doi.org/10.1057/palgrave.jors.2601990
https://doi.org/10.1002/sim.4780140108
http://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1901.08755
https://arxiv.org/abs/1901.08755
https://blog.openmined.org/federated-learning-types/
https://doi.org/10.1109/TBDATA.2020.2992755
https://doi.org/10.1109/TBDATA.2020.2992755
https://arxiv.org/abs/1905.10053
https://arxiv.org/abs/1905.10053

BIBLIOGRAPHY BIBLIOGRAPHY

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Kholod I, Yanaki E, Fomichev D, Shalugin E, Novikova E, Filippov E, et al. Open-Source
Federated Learning Frameworks for loT: A Comparative Review and Analysis. Sensors.
2021;21 (1):167. Available from: https://www.mdpi.com/1424-8220/21/1/167.

Fu F, Jiang J, Shao Y, Cui B. An Experimental Evaluation of Large Scale GBDT
Systems. arXiv. 2019. Available from: https://arxiv.org/pdf/1907.01882.pdf.

OpenMined. PySyft. GitHub; 2020. Available from: https://github.com/
OpenMined/PySyft.

Saxena A, Goebel K, Simon D, Eklund N. Damage Propogation Modeling for Air-
craft Engine Run-to-Failure Simulation. 2008 International Conference on Prognos-
tics and Health Management. 2018. Available from: https://ti.arc.nasa.gov/
publications/154/download/.

Frederick DK, DeCastro JA, Litt JS. User's Guide for the Commercial Modular Aero-
Propulsion System Simulation (C-MAPSS); 2007. Available from: https://core.ac.
uk/download/pdf/10539072. pdf.

Chen X, Jin G, Qiu S, Lu M, Yu D. Direct Remaining Useful Life Estimation Based
on Random Forest Regression. Institute of Electrical and Electronics Engineers. 2020.
Available from: https://ieeexplore.ieee.org/document/9281004.

Mann HB. Nonparametric Tests Against Trend. The Econometric Society. 1945;13:245—
259. Available from: https://doi.org/10.2307/1907187.

Wu J, Hu K, Cheng Y, Zhu H, Shao X, Wang Y. Data-driven remaining useful life
prediction via multiple sensor signals and deep long short-term memory neural network.
ISA Transactions. 2020;97:241-250. Available from: https://www.sciencedirect.
com/science/article/pii/S0019057819302939.

Chuang C, Ningyun L, Bin J, Cunsong W. A Risk-Averse Remaining Useful Life
Estimation for Predictive Maintenance. IEEE/CAA Journal of Automatica Sinica.
2021;8(2):412-422. Available from: https://ieeexplore.ieee.org/document/
9317711.

Hussain M, Mahmud |. pyMannKendall: a python package for non parametric Mann
Kendall family of trend tests. Journal of Open Source Software. 2019 7;4(39):1556.
Available from: http://dx.doi.org/10.21105/joss.01556.

Peters K. Survival analysis for predictive maintenance of turbofan engines;.
Available from: https://towardsdatascience.com/survival-analysis-for-
predictive-maintenance-of-turbofan-engines-7e2e9b82dcOe.

Amidon A. How to Apply Hierarchical Clustering to Time Series;.  Avail-
able from: https://towardsdatascience.com/how-to-apply-hierarchical-
clustering-to-time-series-abfe2a7d8447.

70


https://www.mdpi.com/1424-8220/21/1/167
https://arxiv.org/pdf/1907.01882.pdf
https://github.com/OpenMined/PySyft
https://github.com/OpenMined/PySyft
https://ti.arc.nasa.gov/publications/154/download/
https://ti.arc.nasa.gov/publications/154/download/
https://core.ac.uk/download/pdf/10539072.pdf
https://core.ac.uk/download/pdf/10539072.pdf
https://ieeexplore.ieee.org/document/9281004
https://doi.org/10.2307/1907187
https://www.sciencedirect.com/science/article/pii/S0019057819302939
https://www.sciencedirect.com/science/article/pii/S0019057819302939
https://ieeexplore.ieee.org/document/9317711
https://ieeexplore.ieee.org/document/9317711
http://dx.doi.org/10.21105/joss.01556
https://towardsdatascience.com/survival-analysis-for-predictive-maintenance-of-turbofan-engines-7e2e9b82dc0e
https://towardsdatascience.com/survival-analysis-for-predictive-maintenance-of-turbofan-engines-7e2e9b82dc0e
https://towardsdatascience.com/how-to-apply-hierarchical-clustering-to-time-series-a5fe2a7d8447
https://towardsdatascience.com/how-to-apply-hierarchical-clustering-to-time-series-a5fe2a7d8447

BIBLIOGRAPHY BIBLIOGRAPHY

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Lau M. Predictive Maintenance of Turbofan Engines using Federated Learning with
PySyft and PyGrid;. Available from: https://blog.openmined.org/predictive-
maintenance-of-turbofan-engines-using-federated-learning/.

OpenMined. PyGrid. GitHub; 2020. Available from: https://github.com/
OpenMined/PyGrid.

Chu CH, Lee CJ, Yeh HY. Developing Deep Survival Model for Remaining Useful Life
Estimation Based on Convolutional and Long Short-Term Memory Neural Networks.
Hindawi. 2020. Available from: https://doi.org/10.1155/2020/8814658.

ai S. Federated Learning and Differential Privacy Framework. GitHub; 2020. Avail-
able from: https://github.com/sherpaai/Sherpa.ai-Federated-Learning-
Framework.

TensorFlow. TensorFlow Federated. GitHub; 2020. Available from: https://github.
com/tensorflow/federated.

Baidu. Paddle Federated Learning. GitHub; 2020. Available from: https://github.
com/PaddlePaddle/PaddleFL.

Li Q, Wen Z, Wu Z, Hu S, Wang N, Li VY, et al. A Survey on Federated Learning
Systems: Vision, Hype and Reality for Data Privacy and Protection. arXiv. Available
from: https://arxiv.org/pdf/1907.09693.pdf.

PyTorch. PyTorch. GitHub; 2020. Available from: https://github.com/pytorch/
pytorch.

TensorFlow. TensorFlow. GitHub; 2020. Available from: https://github.com/
tensorflow/tensorflow.

Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, et al.
Practical Secure Aggregation for Privacy-Preserving Machine Learning. Association for
Computing Machinery. 2017. Available from: https://doi.org/10.1145/3133956.
3133982.

FATE. FATE documentation; 2020. Available from: https://fate.readthedocs.
io/en/latest/index.html.

Heaton J. Introduction to Neural Networks for Java, 2nd Edition. 2nd ed. Heaton
Research, Inc.; 2008.

Perego C, Sbolli M, Specchia C, Fiuzat M, McCaw ZR, Metra M, et al. Utility of
Restricted Mean Survival Time Analysis for Heart Failure Clinical Trial Evaluation and
Interpretation. JACC: Heart Failure. 2020;8(12):973-983. Available from: https:
//doi.org/10.1016/j.jchf.2020.07.005.

71


https://blog.openmined.org/predictive-maintenance-of-turbofan-engines-using-federated-learning/
https://blog.openmined.org/predictive-maintenance-of-turbofan-engines-using-federated-learning/
https://github.com/OpenMined/PyGrid
https://github.com/OpenMined/PyGrid
https://doi.org/10.1155/2020/8814658
https://github.com/sherpaai/Sherpa.ai-Federated-Learning-Framework
https://github.com/sherpaai/Sherpa.ai-Federated-Learning-Framework
https://github.com/tensorflow/federated
https://github.com/tensorflow/federated
https://github.com/PaddlePaddle/PaddleFL
https://github.com/PaddlePaddle/PaddleFL
https://arxiv.org/pdf/1907.09693.pdf
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/3133956.3133982
https://fate.readthedocs.io/en/latest/index.html
https://fate.readthedocs.io/en/latest/index.html
https://doi.org/10.1016/j.jchf.2020.07.005
https://doi.org/10.1016/j.jchf.2020.07.005

	Abstract
	Acknowledgement
	1 Introduction
	1.1 Motivation
	1.1.1 Predictive Maintenance
	1.1.2 Constraints
	1.1.3 Federated Learning
	1.1.4 Time-to-Event Prediction

	1.2 Aims and Objectives
	1.3 Contributions
	1.4 Outcome
	1.5 Outline
	1.6 Professional and Ethical Considerations

	2 Background
	2.1 Time-to-Event Prediction
	2.1.1 Statistical Methods
	2.1.1.1 Kaplan-Meier Estimator
	2.1.1.2 Cox Proportional Hazard Model
	2.1.1.3 Regression Model

	2.1.2 Supervised Machine Learning Methods
	2.1.2.1 Random Survival Forest
	2.1.2.2 Artificial Neural Network


	2.2 Federated Learning
	2.2.1 Overview
	2.2.2 Federated Gradient Boosted Decision Tree
	2.2.3 Federated Neural Network


	3 Data
	3.1 Overview
	3.2 Exploratory Data Analysis
	3.2.1 Operational Settings
	3.2.2 Sensor Readings

	3.3 Feature Engineering
	3.3.1 Selection of Sensors
	3.3.2 Data Normalization and Polynomial Fitting
	3.3.3 Data censoring
	3.3.4 Feature Extraction

	3.4 Federated Data Sets

	4 Experimental Setup
	4.1 Introduction
	4.1.1 Previous Studies
	4.1.2 Aims of Experimental Setup

	4.2 Benchmark Models
	4.3 Federated Learning Environment
	4.3.1 Key Components
	4.3.2 Selected Federated Learning Framework
	4.3.3 Review of FATE architecture
	4.3.3.1 Standalone Deployment
	4.3.3.2 Modelling Pipeline
	4.3.3.3 FATE Board
	4.3.3.4 Evaluating Results



	5 Model Architecture
	5.1 Problem Statement
	5.2 Baseline Centralised Models
	5.2.1 Kaplan-Meier
	5.2.2 Cox Proportional Hazard
	5.2.3 Neural Network
	5.2.4 Random Forest

	5.3 Federated Learning Architecture
	5.3.1 Hyperparameters in the Federated Process
	5.3.2 Federated Models


	6 Results and Evaluation
	6.1 Summary of Aggregate Test Results
	6.2 Analysis of Results
	6.2.1 Centralised Models
	6.2.1.1 Statistical Models
	6.2.1.2 Machine Learning Models

	6.2.2 Federated Learning Models
	6.2.2.1 Federated GBDT Model
	6.2.2.2 Federated Neural Network Model


	6.3 Individual Engine's Results
	6.3.1 Federated Models


	7 Conclusions and Next Steps
	7.1 Conclusion
	7.2 Next Steps

	Appendices
	A Dendrogram and trend clusters of 5 workers imbalanced split

