

Modular Framework of Machine Learning Pipeline

John Ng MA FIA BPharm

Data Science use cases in Insurance

- Chat-bots
- Robo-Advisors
- Customer Service prioritisation
- Paperwork automation
- Unstructured data

- Conversion
- Persistency / Renewal
- Churn / Lapse
- Cross-Selling
- Customer Segmentation
- Customer Life-Time-Value (LTV)
- Recommendation Engine
- Sentiment Analysis

- Pricing Accuracy
- Pricing Sensitivity & Elasticity
- Pricing Optimisation
- Dynamic Pricing
- Reserving
- Capital Modelling
- Mortality and Morbidity

- Claims management
- Risk Granularity
- Accelerated Underwriting
- Motor Telematics
- Healthcare analytics, Wearables
- Portfolio Analytics

Actuarial Control Cycle

Actuarial Data Science Control Cycle

Data Module

Data
Sourcing &
Engineering

Exploratory Data Analysis (EDA) Data
Cleaning
& Preparation

Feature Engineering Data Segregation Imputation

- Data Sources
- Data Connectivity
- Data Engineering
- Data Warehouse
- Assess Quality
- Statistics
- Distributions
- Correlations
- Reporting & Visualisation

- Identify errors
- Formatting
- Outliers
- Remove "postevent" information

Feature ...

- Extraction
- Transformation
- Selection
- Expert Driven
- · Automatic F.E.

Split into Train, Validation & Test Set

- Random split
- Stratified sampling

Impute missing values

- Fit learner on training set then transform train and test sets
- Fixed imputations (Mean, Median)
- Better approaches: MICE, KNN

Data Dictionary

Feature Store

Modelling Module

Modelling Module

September 14, 2020

Deployment Module

Pipeline Operation and Automation

Speed

Automation of Processes: Efficiency and Consistency

Simplify Machine Learning lifecycle development

Performance

Best-in-class algorithms for better prediction accuracy

Leverage best practices in data across enterprise

Risk Management

Automated Logging, Reporting, Audit Trail

Error Handling

Integration

• Integration into Enterprise

Common Platform for Business-As-Usual, R&D and Proof-Of-Concepts

Scalability

Version Control (e.g. Git)

Scalability & Iterative Improvement

Pipeline Governance

- Ethics, Fairness
- Regulatory requirements
- Data Protection
- Data Lineage
- Model Explainability / Explainable AI (XAI)
 - SHAP, LIME, DeepLIFT, permutation feature importance
- Access Control and Security

Five Models of Pricing Operation

Tariff

 Regulator has significant influence over the rates

Qualitative

- "Correct" pricing cannot be determined purely by numerical analysis and subjective factors play a significant role
- Data maybe incomplete or not exist

Cost Plus

- Statistically driven analysis
- Based on expected cost of claims, appropriately loaded for expenses, profit etc
- Typically single distribution channel

Distribution

- Price also allows for non cost elements such as propensity to shop around, price elasticity
- Pricing strategy for similar products being managed across multiple distribution channels

Industrial

- Typically domain of very large insurers
- multiple brands, channels, countries
- Machine oriented approach
- Focus on operating efficiency and economies of scale

where Machine Learning Pipeline can add value

Source: GRIP report

Application 3: Customer Lifetime Value (CLV)

- Definition: The net present value of a customer during entire relationship with the company
- Customer Lifetime Value = Present value + Future Value
 - Present value = Premiums + cross/up-sell revenue Claim costs Activity-based costs (ABC)
 - Future value = (Premiums + cross/up-sell revenue Claim costs Activity-based costs (ABC) Cancellation)/(1+i)^t

Application 3: Customer Lifetime Value Segmentation

CLV ML pipeline helps you to make smart decisions (decision science) and grow business

New Customers: Acquisition Lifetime Value

- Pricing
- Inform <u>marketing</u> target profiles
- Generate <u>sales</u> leads for new customers + prioritisation
- Manage customer <u>service</u> resources
- Cross sell and up sell
- Personalised products
- Product designs or features
- Channel optimisation (affinity partners, price comparison websites)

Existing Customers: Future Lifetime Value

High Value customers

- Cross sell and up sell
- Reduce churn and improve persistency
- Personalised servicing
- Selective discounting and offers

Low Value customers

Termination or reduce cost of service

Application 3: Customer Lifetime Value Optimisation

Commercial Price associated with Optimal portfolio CLV value (subject to constraints)

