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Structure of multivariate claim count data

Suppose that there are n policyholder contracts, each of which involves
in L types of claims (or perils).
Denote N i = (N(1)

i , . . . , N(L)
i ) and ni = (n(1)

i , . . . , n(L)
i ) for

i = 1, . . . , n respectively as the number of claims vector (for each of
the L claim types) and its corresponding realizations.
Corresponding to each contract, several explanatory variables
x i = (xi1, . . . , xiP) are available for us to analyze the observed
heterogeneities of policyholder’s risk profiles.
The policyholder contracts are assumed to be independent of each
other.
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Models for multivariate claim count data

(i) Multivariate Poisson models

(ii) Multivariate mixed Poisson models
(a) When a shared random effect is distributed according to a univariate

continuous mixing distribution
(b) When multiple random effects are distributed according to a multivariate

continuous mixing distribution
(iii) Copula-based models
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Challenges in the pre-existing models

The model specification of type (i) is too restrictive for multivariate
claim count data since it does not take into account the overdispersion
phenomenon, which is a problem that was inherited from the univariate
case.

The model specification of type (ii), category (a) allows only positive
correlation between multiple types of claims but in some cases,
negative correlations may be of interest as well.
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Challenges in pre-existing models

The model specification of type (iii) may not fully specify the
dependence structure, since as opposed to the case with continuous
marginals, identifiability issues can arise when a continuous copula
distribution is paired with discrete marginals.

Further, the density function of a copula with discrete marginals
usually involves both summation and integration so that it suffers from
computational burden due to multivariate numerical integration.
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The proposed model

Mainly, we consider a multivariate mixed Poisson model with multiple
random effects.

We also use coverage specific covariate information to model not only
the mean component, but also varying dispersions or dependence upon
individual characteristics and the characteristics of the coverage types.
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Multivariate mixed Poisson regression model

Suppose that given a continuous random variable Z (l)
i > 0, N(l)

i |Z
(l)
i follows

a Poisson distribution with probability mass function (pmf) given by

p
(
n(l)

i |z
(l)
i

)
= (µ(l)

i z(l)
i )n(l)

i e−µ
(l)
i z(l)

i

n(l)
i !

, (1)

Z (l)
i is the random effect for l th claim of poliyholder i that accounts for

the associated unobserved heterogeneity.
E[N(l)

i |Z
(l)
i ] = Var(N(l)

i |Z
(l)
i ) = µ

(l)
i Z (l)

i

Note that we assume that E[Z (l)
i ] = 1 for the sake of model

identifiability.
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Multivariate mixed Poisson regression model

The dependence of N i among the claim types is modelled through the
dependence of the latent variables Z i := (Z (1)

i , . . . , Z (L)
i ) using a copula,

with the joint distribution of Z i given by

π(z i) =
L∏

l=1
fl(z(l)

i )× cΦi

(
F1(z(1)

i ), . . . , FL(z(L)
i )

)
, (2)

where

z i = (z(1)
i , . . . , z(L)

i ),
cΦi is an elliptical copula density function that models dependence
among the latent variables,
fl and Fl are marginal density and distribution functions of z(l),
respectively, which are parameterized by the dispersion parameter σ

(l)
i .
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Multivariate mixed Poisson regression model

Now, the joint pmf of (N(1)
i , . . . , N(L)

i ) is given by the following:

p
(
n(1)

i , . . . , n(L)
i

)
=
∫ L∏

l=1
p
(
n(l)

i |z
(l)
i

)
π(z i)dz i . (3)

Note that if Cϕi is an independent copula, then
p
(
n(1)

i , . . . , n(L)
i

)
=
∏L

l=1 p
(
n(l)

i

)
so that the number of claims from

different types of perils are assumed to be independent.
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Multivariate mixed Poisson regression model

To allow for the mean, dispersion and dependence parameters to be
modelled as functions of explanatory variables with parametric linear
functional forms, we assume that

µ
(l)
i = exp

(
x(l)T

1,i β
(l)
1

)
, (4)

σ
(l)
i = exp

(
x(l)T

2,i β
(l)
2

)
and (5)

ϕ
(l ,l ′)
i = g(x(l ,l ′)T

3,i β
(l ,l ′)
3 ), (6)
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Multivariate mixed Poisson regression model

where x(l)
1,i , x(l)

2,i and x(l ,l ′)
3,i are covariate vectors being (potentially different)

subsets of x i with dimensions P(l)
1 × 1, P(l)

2 × 1 and P(l ,l ′)
3 × 1 respectively

for l , l ′ = 1, . . . , L, and β
(l)
1 =

(
β

(l)
1,1, ..., β

(l)
1,P(l)

1

)T
,

β
(l)
2 =

(
β

(l)
2,1, ..., β

(l)
2,P(l)

2

)T
and β

(l ,l ′)
3 =

(
β

(l ,l ′)
3,1 , ..., β

(l ,l ′)
3,P(l,l′)

3

)T
are the

corresponding parameter vectors.
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Model properties: Moments

The expectation, variance, covariance and correlations of the number of
claims are given by

E[N(l)
i ] = µ

(l)
i , Var(N(l)

i ) = µ
(l)
i + µ

(l)
i

2
Var(Z (l)

i ),

Cov(N(l)
i , N(l ′)

i ) = µ
(l)
i µ

(l ′)
i Cov(Z (l)

i , Z (l ′)
i ),

(7)

Corr(N(l)
i , N(l ′)

i ) = Cov(Z (l)
i , Z (l ′)

i )√(
1/µ

(l)
i + Var(Z (l)

i )
) (

1/µ
(l ′)
i + Var(Z (l ′)

i )
)

= Corr(Z (l)
i , Z (l ′)

i )√(
1/
[
µ

(l)
i Var(Z (l)

i )
]

+ 1
) (

1/
[
µ

(l ′)
i Var(Z (l ′)

i )
]

+ 1
) .

(8)
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Model properties: Moments

It implies

(i) sign(Corr(N(l)
i , N(l ′)

i )) = sign(Corr(Z (l)
i , Z (l ′)

i )),

(ii) Corr(N(l)
i , N(l ′)

i ) = ±1 iff Corr(Z (l)
i , Z (l ′)

i ) = ±1, µ
(l)
i Var(Z (l)

i )→∞
and µ

(l ′)
i Var(Z (l ′)

i )→∞.
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Model properties: Marginalization

The proposed joint pmf is closed to marginalization, i.e. the marginal
distribution of N(l)

i is given by

p(n(l)
i ) =

∫
p(n(l)

i |z
(l)
i )dFl(z(l)

i ), (9)

which is a univariate mixed Poisson regression model with varying dispersion.
In general, any L′-variate response marginal (with L′ < L) is still an
L′-variate mixed Poisson regression model with varying dispersion and
dependence.
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Model properties: Identifiability of the joint distribution

Suppose the following conditions hold for l , l ′ = 1, . . . , L:

(i) Var(Z (l)
i ) is a monotonic strictly increasing or decreasing function of the

dispersion parameter σ
(l)
i only; and

(ii)

Corr(Z (l)
i , Z (l ′)

i ) is a monotonic strictly increasing or decreasing function
of the dependence parameter ϕ

(l ,l ′)
i given that other parameters µ

(l)
i , µ

(l ′)
i ,

σ
(l)
i and σ

(l ′)
i are fixed.

Then, the proposed model is identifiable, i.e. the two joint distributions
(from the proposed model class with different parameterizations) match with

p
(
n(1)

i , . . . , n(L)
i

)
= p̃

(
n(1)

i , . . . , n(L)
i

)
where p and p̃ are parameterized by θ = {β(l)

1 , β
(l)
2 , β

(l ,l ′)
3 | l , l ′ = 1, . . . , L}

and θ̃ = {β̃(l)
1 , β̃

(l)
2 , β̃

(l ,l ′)
3 | l , l ′ = 1, . . . , L}, if and only if θ = θ̃.
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Model specifications

Choice of copula

For the copula function CΦi (·), we choose a Gaussian copula. In this
case, the copula density is given as the following closed form:

cΦi (ui1, . . . , uiL) = |Φi |−1/2exp(−Φ−1(u i)⊤(Φ−1
i − IL)Φ−1(u i))/2),

where u i = (ui1, . . . , uiL), IL is the L× L identity matrix, and Φ−1(·) is
the quantile function of the standard normal distribution.

For expository purposes, from now on we specialize with the bivariate
case L = 2.
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Model specifications

Link function for dependence parameter

When L = 2, we only have one dependence parameter ϕ
(1,2)
i in Φi .

Therefore, from now on, we write ϕi := ϕ
(1,2)
i for simplicity.

As ϕi is a correlation parameter with ϕi ∈ (−1, 1), we use
g(x) = 2

π arctan x as a natural link function. Since
g : (−∞,∞)⇒ (−1, 1), there is no restriction in the range of xT

3,iβ3,
which is beneficial in terms of optimization.
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Model specifications

Marginal distribution of Z

We assume lognormal distribution LN (−σ
(l)2
i
2 , σ

(l)2
i ) is selected as

Fl(·), the marginal distribution of the latent random variable Z (l)
i , so

that we have E[Z (l)
i ] = 1 and Var(Z (l)

i ) = exp{σ(l)2
i } − 1.

Note that it is possible to use alternative marginal distributions of Z (l)
i

as long as E[Z (l)
i ] = 1 and Var(Z (l)

i ) is a monotone function of σ
(l)
i .

(e.g., gamma)
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Model specifications

With the model specifications, we have the correlation coefficient between
N(1)

i and N(2)
i as follows:

Corr
(
N(1)

i , N(2)
i

)
=

(
exp(ϕiσ

(1)
i σ

(2)
i )− 1

)
√[

1/µ
(1)
i + exp(σ(1)2

i )− 1
] [

1/µ
(2)
i + exp(σ(2)2

i )− 1
] .

(10)
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Statistical inference: The MCEM algorithm

By augmentation of the unobserved multivariate random effects Z (l)
i for

i = 1, . . . , n and l = 1, . . . , L, one can write the complete log-likelihood as
follows:

ℓc(θ) =
n∑

i=1

[( L∑
l=1

n(l)
i log(µ(l)

i z(l)
i )− µ

(l)
i z(l)

i − log n(l)
i !
)

+ log π(z i)
]

,

(11)
where θ = (β(1)

1 , . . . , β
(L)
1 , β

(1)
2 , . . . , β

(L)
2 , β3) includes all parameters to be

estimated.
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Statistical inference: The MCEM algorithm
E-step: Evaluate the following Q-function given θ(r), estimated value of θ
at the r th iteration.

Q(θ; θ(r)) = Ezi [ℓc(θ)|D, θ(r)]

∝
n∑

i=1

L∑
l=1

n(l)
i log µ

(l)
i − µ

(l)
i Ezi [z

(l)
i |D, θ(r)]

+
n∑

i=1
Ezi [log π(z i)|D, θ(r)].

(12)

where

Ezi [f (z i)|D, θ(r)] =
∫

f (z i)π(z i |D)dz i

≃
∑S

s=1 f (z i[s])
∏L

l=1 p
(
n(l)

i |z
(l)
i[s]

)
∑S

s=1
∏L

l=1 p
(
n(l)

i |z
(l)
i[s]

) . (13)
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Statistical inference: The MCEM algorithm

M-step: In this step, we want to find the updated parameters θ(r+1) such
that the Q-function is increased with respect to θ, in other words,
Q(θ(r+1); θ(r)) ≥ Q(θ(r); θ(r)).

To do so, we update the parameters β
(1)
1 , β

(2)
1 , β

(1)
2 , β

(2)
2 and β3

sequentially using Newton-Raphson algorithm as follows:
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Statistical inference: The MCEM algorithm

1 Set θ ← θ(r). Recall that θ = (β(1)
1 , β

(2)
1 , β

(1)
2 , β

(2)
2 , β3).

2 For l = 1, 2 and j = 1, 2, update the parameters sequentially as
β

(l)
j ← β

(l)
j − [H(l ;r)

j (θ)]−1h(l ;r)
j (θ), where h(l ;r)

j (θ) is a p(l)
j -column

vector and H(l ;r)
j (θ) is a p(l)

j × p(l)
j matrix which will be defined below.

3 Update the regression parameters for dependence
β3 ← β3 − [H(r)

3 (θ)]−1h(r)
j (θ), where hj(θ) is a p3-column vector and

Hj(θ) is a p3 × p3 matrix defined below.
4 Retrieve the updated parameters θ(r+1) ← θ.
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Data description

We examine the Local Government Property Insurance Fund (LGPIF)
data from the state of Wisconsin.

While the LGPIF contains multiple groups of property insurance
coverage, we specially focus on modelling jointly the claim frequencies
of inland marine (IM, denoted as N(1)

i ) and new vehicle collisions (CN,
denoted as N(2)

i ).
There are a total of n = 5, 240 entity-years (from now on we call it
“policies") over a period of 5 years from 2006-2010 for model training
purpose.
The remaining no = 1, 025 policies of year 2011 are treated as a test
set for model validation purpose.
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Summary statistics for the explanatory variables

Variable
index

Variable
name Type Description Proportion/

Mean

1 TypeCity Categorical Indicator for city entity. 0.1450
2 TypeCounty Categorical Indicator for county entity. 0.0592
3 TypeMisc Categorical Indicator for miscellaneous entity. 0.1078
4 TypeSchool Categorical Indicator for school entity. 0.2910
5 TypeTown Categorical Indicator for town entity. 0.1660
– TypeVillage Categorical Indicator for village entity (reference category). 0.2309
6 CoverageIM Continuous Coverage amount of IM (transformed). 0.0000
7 lnDeductIM Continuous Log deductible amount for inland marine. 5.3440
8 NoClaimCreditIM Binary Indicator for no IM claims in prior year. 0.4399
9 CoverageCN Continuous Coverage amount of CN (transformed). 0.0000
10 NoClaimCreditCN Binary Indicator for no CN claims in prior year. 0.0945
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Benchmarks for comparison

The BPLN regression model with the shared random effect

As a special case of the proposed model, consider a multivariate
Poisson-lognormal mixture model with the shared random effect where
Z (l)

i = Zi and σi = σ for l = 1, . . . , L and i = 1, . . . , n.

The BPLN regression model with common covariates

As another special case of the proposed model, consider the
multivariate Poisson-lognormal random effects model where
x(l)T

1,i = xT
1,i , σ

(l)
i = σ(l), and ϕi = ϕ for l = 1, . . . , L and i = 1, . . . , n.
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In-sample estimation results

Proposed Shared Common

β
(1)
1 β

(2)
1 β

(1)
2 β

(2)
2 β3 β

(1)
1 β

(2)
1 β

(1)
1 β

(2)
1

(Intercept) -4.0163 -5.4606 -1.3651 -0.1861 0.2011 -4.1238 -5.3784 -4.1178 -3.9479
(0.4249) (0.8398) (0.0366) (0.0153) (0.0119) (0.4224) (0.2923) (0.1546) (0.1301)

TypeCity -0.2121 0.372 0.6322 -0.0931 -0.1461 0.3671 1.047 0.9493
(0.1891) (0.156) (0.0354) (0.0272) (0.2103) (0.1536) (0.1896) (0.1626)

TypeCounty 0.7295 0.975 -0.133 0.1343 0.2034 0.5447 0.9306 2.615 3.4519
(0.1909) (0.1283) (0.05) (0.0477) (0.0839) (0.2237) (0.138) (0.177) (0.1389)

TypeMisc -2.1581 -0.8179 0.4907 0.0801 -2.1404 -0.8255 -2.9629 -2.1741
(1.0123) (0.6054) (0.0379) (0.0294) (1.0098) (0.5825) (1.0118) (0.5918)

TypeSchool -0.0174 -0.2059 0.9499 0.0815 0.0796 0.1547 -0.2219 -1.0404 -0.0088
(0.1815) (0.1739) (0.0306) (0.0221) (0.0348) (0.2968) (0.1693) (0.2765) (0.1755)

TypeTown -0.3916 -1.413 -0.0408 0.0787 -0.3823 -1.3951 -0.4621 -1.6276
(0.2764) (0.4745) (0.0315) (0.0254) (0.274) (0.3713) (0.2767) (0.3768)

Coverage 1.4547 2.439 1.1862 -0.0638 1.5764 2.4129
(0.1153) (0.4562) (0.0187) (0.0077) (0.1758) (0.1489)

lnDeduct 0.0296 -0.5795 -0.1439 0.1692 0.0381 -0.6244
(0.0627) (0.0452) (0.006) (0.0259) (0.0616) (0.1314)

NoClaimCredit -0.3689 -0.8581 -0.4757
(0.1088) (0.0197) (0.1231)

Loglikelihood -1840.45 -1861.96 -2399.70
AIC 3754.91 3759.92 4829.40
BIC 3997.78 3878.07 4927.86
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Findings from the estimation results

Regression coefficients for mean components are similar for the
proposed and shared model, while the the coefficients from the
common model deviates from such trend.

The common model suffers from lack of fit mainly due to the omission
of coverage specific covariates.
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Findings from the estimation results

After taking account of model complexities, our proposed model still
shows slight improvement in AIC yet produces inferior BIC compared
to the shared model.

We briefly explain this issue as follows: β̂3 is significantly positive for
all types of location so that ϕ̂i > 0 for all i = 1, . . . , n. With positive
dependence captured for both proposed and shared models, these two
models are close in capturing the dependence structures across perils.
However, one cannot preclude the possibility of having negatively
correlated claim frequencies that dampens the applicability of the
shared random effect model especially when more than two types of
coverage are jointly modeled. In this case the advantage of using our
proposed model will be even more apparent.
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Findings from the estimation results

Observing the estimated regression coefficients (β̂(1)
2 , β̂

(2)
2 and β̂3) for

the dispersion parameters (σ̂(1)
i , σ̂

(2)
i ) and correlation (ϕ̂i) parameter

with the corresponding standard errors, we find that σ̂
(1)
i , σ̂

(2)
i and ϕ̂i

are all significantly influenced by many explanatory variables.
This result has an important implication in insurance pricing
perspective, as insurance premiums are often determined not only by
the expected claims, but also by their uncertainties.
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Findings from the estimation results

As insurance companies are typically risk adverse, higher dispersion or
higher correlation on claim frequencies usually result to higher premium
due to increased risk or reduced diversification.

For example, it may be reasonable to charge an increased premium on
policyholders with school entity type even if it does not have significant
impacts to the average claim frequencies of both perils (β̂(1)

1 and β̂
(2)
1

do not significantly deviate from zero),
because of its positive effects to the dispersion parameters
(significantly positive β̂

(1)
2 and β̂

(2)
2 resulting to higher uncertainties on

the claim counts) and correlation parameter (significantly positive β̂3
resulting to reduced diversification).

Himchan Jeong, George Tzougas, Tsz Chai Fung Multi-count with varying dispersion and dependence 31 / 36



Findings from the estimation results

As insurance companies are typically risk adverse, higher dispersion or
higher correlation on claim frequencies usually result to higher premium
due to increased risk or reduced diversification.
For example, it may be reasonable to charge an increased premium on
policyholders with school entity type even if it does not have significant
impacts to the average claim frequencies of both perils (β̂(1)

1 and β̂
(2)
1

do not significantly deviate from zero),

because of its positive effects to the dispersion parameters
(significantly positive β̂

(1)
2 and β̂

(2)
2 resulting to higher uncertainties on

the claim counts) and correlation parameter (significantly positive β̂3
resulting to reduced diversification).

Himchan Jeong, George Tzougas, Tsz Chai Fung Multi-count with varying dispersion and dependence 31 / 36



Findings from the estimation results

As insurance companies are typically risk adverse, higher dispersion or
higher correlation on claim frequencies usually result to higher premium
due to increased risk or reduced diversification.
For example, it may be reasonable to charge an increased premium on
policyholders with school entity type even if it does not have significant
impacts to the average claim frequencies of both perils (β̂(1)

1 and β̂
(2)
1

do not significantly deviate from zero),
because of its positive effects to the dispersion parameters
(significantly positive β̂

(1)
2 and β̂

(2)
2 resulting to higher uncertainties on

the claim counts) and correlation parameter (significantly positive β̂3
resulting to reduced diversification).

Himchan Jeong, George Tzougas, Tsz Chai Fung Multi-count with varying dispersion and dependence 31 / 36



Analysis of dependence

As the responses are discrete, it is more appropriate to analyze rank
based dependence measures such as Kendall’s tau (instead of linear
correlation) to examine the goodness-of-fit of the fitted model in terms
of dependence modelling.

To evaluate the “real" intrinsic dependence between the two claim
types, we present the Kendall’s tau “without covariates influence" by
applying a probability transformation technique.
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Analysis of dependence

From both approaches, we can see that the fitted model matches
decently to the empirical data in terms of Kendall’s taus, suggesting
the capability of the proposed multivariate count model to adequately
capture the dependence structure of the dataset.

Kendall’s tau Empirical dataset Proposed model

With covariates influence 0.198 0.182
Without covariates influence 0.321 0.322

Himchan Jeong, George Tzougas, Tsz Chai Fung Multi-count with varying dispersion and dependence 33 / 36



Analysis of dependence

From both approaches, we can see that the fitted model matches
decently to the empirical data in terms of Kendall’s taus, suggesting
the capability of the proposed multivariate count model to adequately
capture the dependence structure of the dataset.

Kendall’s tau Empirical dataset Proposed model

With covariates influence 0.198 0.182
Without covariates influence 0.321 0.322

Himchan Jeong, George Tzougas, Tsz Chai Fung Multi-count with varying dispersion and dependence 33 / 36



Out-of-sample validation

Once the models are fitted with the training set, prediction
performances of the models are assessed via out-of-sample validation.
To measure the prediction performances, we used root-mean squared
error (RMSE) and deviance statistic.

While the difference of RMSEs between the proposed and shared
models are negligible, one can see that the proposed model
significantly outperforms the other models in terms of deviance, as
shown in following table.

Proposed Shared Common

RMSE 0.4672 0.4664 0.5276
Deviance 444.0522 471.4090 633.0516
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Concluding Remarks

In this article, we considered a multivariate claim count regression
model with varying dispersion and dependence parameters.

Unlike many existing copula based methods for discrete marginals, we
accommodate a continuous mixing density to capture the dependence
that allows us to avoid finite differences in the likelihood, which trigger
exponentially increasing computation times and numerical instability.
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Concluding Remarks

Furthermore, our approach takes into account the impact of individual
and coverage type covariates on the mean, dispersion and dependence
components increasing the model prediction accuracy while
maintaining its tractability.

Therefore, the setup we proposed is fully flexible and can be efficiently
employed for modelling diverse high-dimensional claim count data and
hence it can be applied in various non-life insurance contexts.
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