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Research motivation

Problem: How to build multivariate claim count models for real-life
insurance claim data that display one of the following features?

Claim numbers from different categories are missing common
zeros.

Claim numbers from some/all categories show a zero-inflation
feature.

In the general insurance modelling literature, there has been a lot of
work based on univariate zero-inflation/deflation models, but little has
been done in the multivariate case.
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Research motivation

Multivariate zero-truncation

There are three cases of missing zero count information in the
multivariate setting:

only records with all zeros are missing (Type I multivariate
zero-truncation);
zero counts for one or some classes are missing; or
zeros are completely missing for all classes.

Existing methods:
Type I multivariate zero-truncated Poisson model (Tian et al.,
2018b)
Type I multivariate zero-truncated negative binomial model
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Research motivation

Data Set One

The dataset was obtained from a Chinese health fund that
contains health insurance claim records in the period of
2015-2017. The dataset consists of 40,030 policyholders (PHs).
The underlying health insurance policies provide full insurance
covers on payments associated with in-patient and out-patient
treatments as well as emergency services.
The age of the insured ranges from 28 days to 60 years. There
are no out of pocket payments for PHs.
There are three main causes of claims in the dataset: disease,
accident and other.
The total number of claims for each PH is positive.
Apart from information regarding claims, the dataset also contains
some explanatory variables such as time exposed to risk, age,
gender, region and smoking status.

Pengcheng Zhanga , Xueyuan Wub 28th January, 2022 5 / 50



Research motivation

Empirical distributions

Table: The marginal empirical distribution of three claim types

Disease Accident Other

Count Frequency Percent Frequency Percent Frequency Percent

0 2,887 9.62 28,448 94.83 28,063 93.54
1 23,511 78.37 1,525 5.08 1,899 6.33
2 2,700 9.00 26 0.09 35 0.12
3 580 1.93 1 0.00 3 0.01
4 164 0.55
5 76 0.25
6 37 0.12
7 18 0.06
8 13 0.04
9 7 0.02
≥ 10 7 0.02
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Research motivation

Challenges

In the health insurance dataset, policyholders (PHs) could make
multiple claims on grounds of Disease, Accidents or Other within
each year.
Univariate zero-modified models can’t handle the situation
properly because of the correlation between different types of
claims: negative correlation between Disease and Accidents and
between Disease and Other.
The existing Type I multivariate zero-truncated models, like Type I
multivariate zero-truncated Poisson (MZTP) model and Type I
multivariate zero-truncated NB (MZTNB) model, can’t deal with
the inconsistent zero-modification features in the marginal
distributions in the dataset.
To deal with the heterogeneity among the individual policyholders,
we need to incorporate covariates into our modelling.

Pengcheng Zhanga , Xueyuan Wub 28th January, 2022 7 / 50



Research motivation

Multivariate zero-inflation

There are some possibilities of zero-inflation in the multivariate
setting:

all dimensions show a zero-inflation feature and there are
observations with common zeros;
some dimensions show a zero-inflation feature and there are
observations with common zeros; or
no dimensions show a zero-inflation feature but there are
observations with common zeros.

Existing methods:
Multivariate zero-inflated Poisson (MZIP) model (Liu and Tian,
2015)
Multivariate zero-inflated negative binomial (MZINB) model
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Research motivation

Data Set Two

This dataset is obtained from an automobile portfolio from a major
insurance company operating in Spain in 1995. The whole dataset
consists of 80,994 PHs.
The simplest policy only includes third-party liability (denoted as
Z1 type) and a set of basic guarantees such as emergency
roadside assistance, legal assistance or insurance covering
medical costs (denoted as Z2 type).
PHs with comprehensive coverage and PHs with both
comprehensive and collision coverage are also denoted as Z2
type.
The overall Pearson’s correlation coefficient between these two
types of claim is 0.189.
Apart from information regarding claims, the dataset also contains
11 explanatory variables regarding gender, region, driving
experience, age, etc.
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Research motivation

The empirical distributions of Z1 and Z2

Z2

Z1 0 1 2 3 4 5 6 7 ≥ 0

0 71,087 3,722 807 219 51 14 4 0 75,904
1 3,022 686 184 71 26 10 3 1 4,003
2 574 138 55 15 8 4 1 1 796
3 149 42 21 6 6 1 0 1 226
4 29 15 3 2 1 1 0 0 51
5 4 1 0 0 0 0 2 0 7
6 2 1 0 1 0 0 0 0 4
7 1 0 0 1 0 0 0 0 2
8 0 0 1 0 0 0 0 0 1

≥ 0 74,868 4,605 1,071 315 92 30 10 3 80,994
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Research motivation

Challenges

In this dataset, PHs have different types of policies. We choose to
use the subset of PHs with both comprehensive and collision
coverage as our basis. There are 28,590 PHs in this subset.

Clearly both Z1 and Z2 show zero-inflation features.

The existing multivariate zero-inflated models, like MZIP model
and MZINB model may not deal with the inconsistencies in the
marginal distributions in the dataset.

To deal with the heterogeneity among the individual policyholders,
we need to incorporate covariates into our modelling.
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Existing methods

Type I multivariate zero-truncated (MZT) models I

Let Y = (Y1, . . . ,Ym)> denote a discrete random vector where
Yj , j = 1, . . . ,m, are independent of each other.

Then, Z = (Z1, . . . ,Zm)> is said to follow a Type I multivariate
zero-truncated distribution if

Y d
= UZ =

{
0, U = 0
Z , U = 1

(2.1)

where U ∼ Bernoulli(π0), π0 = Pr(Y 6= 0) = 1−
∏m

j=1 Pr(Yj = 0)
and U is independent of Z .
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Existing methods

Type I multivariate zero-truncated (MZT) models II

The probability mass function (pmf) of Z can be derived as

Pr(Z = z) =
Pr(Y = z)

Pr(U = 1)
=

∏m
j=1 Pr(Yj = zj)

1−
∏m

j=1 Pr(Yj = 0)
, ‖z‖1 > 0,

where ‖·‖1 represents the `1 norm of a vector. An alternative

representation is to define Z d
= Y | Y 6= 0.

If Yj ∼ Poisson (λj ), j = 1, . . . ,m, then Z ∼ MZTP with
λ = (λ1, . . . , λm)>.

If Yj ∼ NB (µj , θj ), j = 1, . . . ,m, then Z ∼ MZTNB with
µ = (µ1, . . . , µm)> and θ = (θ1, . . . , θm)>.
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Existing methods

Multivariate zero-inflated (MZI) models I

For the previously defined Y = (Y1, . . . ,Ym)>, Z ′ = (Z ′1, . . . ,Z
′
m)> is

said to follow a MZI distribution if

Z ′ d
= UY =

{
0m, U = 0,
Y , U = 1,

(2.2)

where U ∼ Bernoulli(π0), 0 < π0 < 1, and U is independent of Y . The
probability mass function (pmf) of Z ′ can be derived as

Pr(Z ′ = z) =
[
1− π0 + π0

m∏
j=1

Pr(Yj = 0)
]v[

π0

m∏
j=1

Pr(Yj = zj)
]1−v

,

where z = (z1, . . . , zm)> is a vector of observed values, v = I(z ′ = 0m)
and I(·) is an indicator function.
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Existing methods

Multivariate zero-inflated (MZI) models II

Two special cases:

Let Yj∼Poisson(λj), for j = 1, . . . ,m. Then Z ′ is said to follow the
MZIP distribution with the parameter vector λ = (λ1, . . . , λm)> and
a zero-inflation parameter π0, denoted by Z ′ ∼ MZIP(λ, π0).

Let Yj∼NB(µj , θj), for j = 1, . . . ,m. Then Z ′ is said to follow the
MZINB distribution with two parameter vectors µ = (µ1, . . . , µm)>,
θ = (θ1, . . . , θm)> and a zero-inflation parameter π0, denoted by
Z ′ ∼ MZINB(µ,θ, π0).
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Existing methods

Some properties

Assume that π0 = Pr(U = 1) ∈ (0,1).
Marginal distributions (note that π0 ≥ Pr(Yj > 0) in case Z):

Pr(Zj = zj) =

{
fYj (zj)/π0, zj > 0,

1− [1− fYj (0)]/π0, zj = 0.

Pr(Z ′j = zj) =

{
π0fYj (zj), zj > 0,

1− π0 + π0fYj (0), zj = 0.

Covariance :

Cov(Zj ,Zk ) = −
(1− π0)E [Yj ]E [Yk ]

π2
0

< 0;

Cov(Z ′j ,Z
′
k ) = π0(1− π0)E [Yj ]E [Yk ] > 0.
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Characterisation of the Type I MZT hurdle model

Univariate hurdle models

To allow for greater flexibility in modelling the marginal behaviour of
each counting variable, we shall assume that Yj , j = 1, . . . ,m, follows a
zero-modified distribution, which can be characterised as follows:

Yj
d
= UjWj =

{
0, Uj = 0,
Wj , Uj = 1,

(3.1)

where
Wj follows a univariate zero-truncated distribution;
Uj ∼ Bernoulli(πj), 0 < πj < 1; and
Uj is independent of Wj .

Again, we assume that all Yj , j = 1, . . . ,m, are independent of each
other.
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Characterisation of the Type I MZT hurdle model

Type I MZT hurdle model

Then Z constructed by (2.1, slide 12) is said to follow the Type I
multivariate zero-truncated hurdle (MZTH) distribution with parameter
vectors π = (π1, . . . , πm)> and Θ = (Θ1, . . . ,Θm)>, where Θj is the
set of parameters related to Wj .
Again, let π0 = 1−

∏m
j=1(1− πj), then the pmf of Z is

Pr(Z = z) =
1
π0

∏
j:zj=0

(1− πj)
∏

j:zj 6=0

πj fWj (zj),

where fWj (zj) = Pr(Wj = zj).

Remark. Actually Wj may not be obtained by zero-truncation. It could
be generated by shifting a counting random variable (i.e. Wj − 1
follows a regular counting distribution). This method is further
discussed in the real application given later.
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Characterisation of the Type I MZT hurdle model

Model Inference – MZTH model I

Now suppose each Zi , i = 1, . . . ,n, independently follows a Type I
multivariate zero-truncated hurdle distribution. Taking covariates into
account, the parameters πij , i = 1, . . . ,n, j = 1, . . . ,m, can be modelled
as

πij =
exp(x>i βj)

1 + exp(x>i βj)
,

where xi = (1, xi1, . . . , xip)> and βj = (βj0, βj1, . . . , βjp)>.
Then β = (β>1 , . . . ,β

>
m)> is the whole set of coefficients to determine.

We denote Θ as the set of parameters related to Wij , i = 1, . . . ,n,
j = 1, . . . ,m, the likelihood function can then be written as

L(β,Θ | z1, . . . , zn) =
n∏

i=1

∏
j:zij=0

(1− πij)
∏

j:zij 6=0
πij fWij (zij)

1−
m∏

j=1
(1− πij)

.
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Characterisation of the Type I MZT hurdle model

Model Inference – MZTH model II

The observed log-likelihood function can be divided into two parts:

`1(β | z1, . . . , zn) =
n∑

i=1

[ ∑
j:zij=0

log(1− πij) +
∑

j:zij 6=0

logπij

]

−
n∑

i=1

log
(

1−
m∏

j=1

(1− πij)
)
,

`2(Θ | z1, . . . , zn) =
n∑

i=1

∑
j:zij 6=0

fWij (zij) =
m∑

j=1

∑
i:zij 6=0

fWij (zij).

For `2, the estimation can be implemented in respect of different j
independently for positive values.
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Characterisation of the Type I MZT hurdle model

Model Inference – MZTH model III
For `1, we implement an EM algorithm illustrated as follows.

Denote ∆ = (∆1, . . . ,∆m)> where ∆j = I(Zj > 0), and I(·) is the
indicator function. The corresponding observed values are denoted by
δ1, . . . , δn where δi = (δi1, . . . , δim)>.

The complete-data log-likelihood function given (y ′1, . . . ,y
′
n) is

`1(β | y ′1, . . . ,y ′n) =
m∑

j=1

n∑
i=1

[
uiδij logπij + (1− uiδij) log(1− πij)

]
.
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Characterisation of the Type I MZT hurdle model

Model Inference – MZTH model IV

Given initial values of parameters βj , j = 1, . . . ,m, the EM algorithm is
as follows:

E-step: Replace ui , i = 1, . . . ,n, by their conditional expectations

ti = E(Ui |δi ,β ) = 1−
m∏

j=1

(1− πij),

where πij =
exp(x>

i βj )

1+exp(x>
i βj )

, i = 1, . . . ,n, j = 1, . . . ,m, are obtained
using the current values of βj .
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Characterisation of the Type I MZT hurdle model

Model Inference – MZTH model V

M-step: Let

`1j(βj | z1, . . . , zn) =
n∑

i=1

[
tiδij logπij + (1− tiδij) log(1− πij)

]
.

Update the regression parameters βj , j = 1, . . . ,m, respectively by
maximizing `1j using Newton-Raphson method.

Iterate between the E-step and the M-step until some
convergence criterion is satisfied, i.e. for two consecutive
iterations of the algorithm (t) and (t − 1), ‖β(t) − β(t−1)‖2 < 10−8.

Remark. The initial values of parameters βj , j = 1, . . . ,m, can be
obtained by implementing univariate logistic regression with observed
values δ1, . . . , δn.
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Real Applications – Data set One

Real Application One

For this study, we take a random sample of 30,000 as training data
to develop the model and the rest is reserved for validation
purposes.

The empirical distribution for Disease claim frequency obviously
has a heavier tail than the ones for Accident and Other, indicating
that Poisson and NB might not be appropriate for it.

Regarding the marginal distributions of the positive claim counts in
the MZTH model, we choose the Poisson inverse Gaussian (PIG)
model for the shifted positive counts W1 − 1, the zero-truncated
Poisson model (ZTP) for W2 and the negative binomial (NB)
model for the shifted positive counts W3 − 1.

Using AIC as our main criterion for model selection, our MZTH
model performs much better than the other two models when
fitting the training dataset.
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Real Applications – Data set One

The model fitting performance of three candidate models without
considering coviariates are given below. It shows that the MZTH model
performs better than the other two models.

Table: Loglikelihood and AIC of the three models considered

Model No. of parameters Loglik AIC

MZTP 3 -30143.14 60292.28
MZTNB 6 -29273.42 58558.84
MZTH 8 -28841.18 57698.36

Next two tables show the model fitting results of MZTH model with
covariates. Note that certain covariates are disgarded when fitting W2
and W3 due to non-convergence issue.
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Real Applications – Data set One

Model-fitting results with covariates I

Table: Estimates and t-ratio associated with the covariates of πj

π1 π2 π3

Estimate t-ratio Estimate t-ratio Estimate t-ratio

Intercept -1.529 -77.260*** -3.942 -150.041*** -3.910 -165.553***
age1(0-7) 1.138 14.350*** -0.446 -4.338*** -0.370 -4.647***
age2(8-18) -0.900 -7.376*** -0.586 -3.609*** -0.967 -6.119***
age3(19-44) -0.235 -8.680*** -0.004 -0.127 -0.441 -12.883***
central 0.463 10.309*** 0.294 5.265*** 0.246 4.449***
north 0.322 4.405*** 0.087 0.888 0.302 3.518***
northeast 0.568 11.691*** -0.062 -0.983 0.025 0.440
northwest 0.200 1.395 -0.187 -0.992 -0.140 -0.788
south 0.227 2.762** 0.088 0.764 0.455 4.793***
southwest 0.071 1.833 -0.146 -2.601** 0.310 7.027***
female 0.347 12.525*** -0.207 -5.440*** 0.080 2.497*
non-smoker -0.524 -26.119*** -0.578 -21.661*** -0.448 -18.714***

Loglikelihood -14387.16
AIC 28846.32

Signif. codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.
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Real Applications – Data set One

Model-fitting results with covariates II

Table: Estimates and t-ratio associated with the covariates of Wj

W1 W2 W3

Estimate t-ratio Estimate t-ratio Estimate t-ratio

Intercept -2.536 -15.400*** -3.729 -14.003*** -3.660 -3.250**
age1(0-7) 1.114 22.798***
age2(8-18) -0.395 -2.424*
age3(19-44) -0.169 -3.738***
central 0.231 3.933*** -0.272 -0.533
north 0.128 1.526 0.425 0.771
northeast 0.216 3.800*** -0.128 -0.259
northwest 0.050 0.354 0.098 0.087
south 0.050 0.496 -0.527 -0.656
southwest -0.040 -0.692 -0.971 -1.810
female -0.017 -0.439 0.224 0.596 -0.403 -1.199
non-smoker 0.216 1.342 -0.064 -0.058

log(σ) 1.212 22.650*** 1.506 2.012*

Loglikelihood -13021.07 -138.79 -190.50
AIC 26068.14 281.59 401.00

Signif. codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.
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Real Applications – Data set One

Predictive performance

Making use of the testing data, we calculate the predicted claim
frequencies for the three claim types using the best models
obtained above and then compare with the observed numbers in
the data.

Because of the heterogeneity caused by the covariates, the
predicted frequencies are calculated by summing up marginal
probabilities of the individual policyholders in the portfolio.

Some cells are grouped to comply with the rule of 5.

We also generate a prediction on the multivariate claim frequency
and summarise the results in a table below, where the predicted
numbers are put in parentheses below the observed numbers.
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Real Applications – Data set One

Table: Goodness-of-fit of the marginal models

Disease (PIG) Accident (ZTP) Other (NB)

Count Observed Predicted Observed Predicted Observed Predicted

0 945 960.01 9515 9514.85 9376 9386.05
1 7931 7861.11 503 505.84 641 631.41
2 879 905.80 12a 9.19a 13a 11.73a

3 172 189.87
4 58 60.94
5 24 24.86
6 9 11.77
7 3 6.17
≥ 8 9 9.46

χ2 (p-value) 5.81 (0.67) 0.79 (0.67) 0.17 (0.92)
a Values are corresponding to Z2 ≥ 2 and Z3 ≥ 2.
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Real Applications – Data set One

Table: Goodness-of-fit of multivariate model

Z2 = 0 Z2 = 1 Z2 ≥ 2

Z3 0 1 ≥ 2 0 ≥ 1 ≥ 0

Z1 0 493 13a 430 10a 12a

(518.29) (12.42) (418.50) (6.13) (9.32)
1 7783 92 50

(7693.22) (92.90) (70.96)
2 841 46a 13a

(886.91) (14.09) (10.24)
3 159

(186.01)
4 53

(59.73)
5 20

(24.38)
6 8

(11.55)
7 2

(6.06)
≥ 8 5

(9.29)
χ2 (p-value) 98.68 (0.00)
a Cells are grouped in terms of the count of disease.
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Characterisation of the MZI hurdle model

Multivariate zero-inflated hurdle (MZIH) model

When Yj , j = 1, . . . ,m, follows the hurdle model defined in (3.1, slide
17), the Z ′ constructed by (2.2, slide 14) is said to follow the MZIH
distribution with parameter vectors π = (π1, . . . , πm)>,
Θ = (Θ1, . . . ,Θm)> and a zero-inflation parameter π0. Here Θj is the
set of parameters related to Wj .

The pmf of Z ′ can be expressed as

Pr(Z ′ = z) =
[
1− π0 + π0

m∏
j=1

(1− πj)
]v

×
[
π0
∏

j:zj=0

(1− πj)
∏

j:zj 6=0

πj fWj (zj)
]1−v

,

where v = I(z = 0m).
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Characterisation of the MZI hurdle model

Model Inference – MZIH model I

Suppose each Z ′i , i = 1, . . . ,n, independently follows an MZIH
distribution. The corresponding observed values are z1, . . . , zn, where
zi = (zi1, . . . , zim)>. The latent variables are v1, . . . , vn, where
vi = I(zi = 0m).
Now we introduce some covariates, x1, . . . ,xn, where
xi = (1, xi1, . . . , xip)>. The parameter πij can then be modeled as

πij =
exp(x>i βj)

1 + exp(x>i βj)
,

where βj = (βj0, βj1, . . . , βjp)>. For the purpose of easy interpretation,
we do not inject covariates in π0.
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Characterisation of the MZI hurdle model

Model Inference – MZIH model II

We denote β = (β1, . . . ,βm) as the set of parameters related to all πij ,
and Θ as the set of parameters related to all Wij , the likelihood
function then can be written as

L(β,Θ, π0) =
n∏

i=1

[
1− π0 + π0

m∏
j=1

(1− πij)
]vi

×
n∏

i=1

[
π0

∏
j:zij=0

(1− πij)
∏

j:zij 6=0

πij fWj (zij)
]1−vi

.
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Characterisation of the MZI hurdle model

Model Inference – MZIH model III
The observed log-likelihood function can be divided into two parts:

`1(β, π0) =
n∑

i=1

vi log
[
1− π0 + π0

m∏
j=1

(1− πij)
]

+
n∑

i=1

(1− vi) logπ0

+
n∑

i=1

(1− vi)
[ ∑

j:zij=0

log(1− πij) +
∑

j:zij 6=0

logπij

]
,

`2(Θ) =
n∑

i=1

∑
j:zij 6=0

(1− vi) log fWj (zij) =
m∑

j=1

∑
i:zij 6=0

log fWj (zij).

Thus, the maximization procedure can be completed for `1 and `2
respectively. For `2, the estimation can proceed in respect of the
zero-truncation part of each margin separately.
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Characterisation of the MZI hurdle model

Model Inference – MZIH model IV
For `1, we implement the EM algorithm as described below.

Denote ∆′ = (∆′1, . . . ,∆
′
m)> where ∆′j = I(Z ′j > 0). The corresponding

observed values are denoted by δ′1, . . . , δ
′
n where δ′i = (δ′i1, . . . , δ

′
im)>.

The observed log-likelihood function `1 can be rewritten as

`1(β, π0) =
n∑

i=1

vi log

1− π0 + π0

m∏
j=1

(1− πij)

+
n∑

i=1

(1− vi) logπ0

+
m∑

j=1

n∑
i=1

(1− vi)
[
δ′ij logπij + (1− δ′ij) log(1− πij)

]
.
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Characterisation of the MZI hurdle model

Model Inference – MZIH model V

In addition to the known values δ′i , suppose we also know the value u′i ,
one for each individual to take the value 1 if the observation of
common zeros is inflated and 0 otherwise. The complete data
log-likelihood function then becomes

`c1(β, π0) =
n∑

i=1

[
u′i vi log(1− π0) + (1− u′i vi) logπ0

]
+

m∑
j=1

n∑
i=1

[
δ′ij logπij + (1− u′i vi − δ′ij) log(1− πij)

]
.

Note in our case, viδ
′
ij = 0. Given initial values of parameters β and π0,

the EM algorithm proceeds as follows.
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Characterisation of the MZI hurdle model

Model Inference – MZIH model VI

E-step: Replace u′i by

ū′i =
1− π0

1− π0 + π0
∏m

j=1(1− πij)
, i = 1, . . . ,n,

where πij =
exp(x>

i βj )

1+exp(x>
i βj )

.

M-step:

- For π0, we can get

π0 = 1− 1
n

n∑
i=1

ū′i vi .
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Characterisation of the MZI hurdle model

Model Inference – MZIH model VII

- For β, let

¯̀c
1j(βj) =

n∑
i=1

[δ′ij logπij + (1− ū′i vi − δ′ij) log(1− πij)].

There is no closed-form representation for βj , so we update the
regression parameters respectively for each j by implementing the
Newton-Raphson method for one step.
Iterate through the E-step and the M-step until some convergence
criterion is met, for example, the relative change of observed
log-likelihood between two consecutive iterations is <ε.

Remark. The initial values of parameters βj for EM algorithm can be obtained
by implementing univariate logistic regression with observed values
z ′

1j , . . . , z
′
nj . The initial value of parameter π0 can be set as 0.5. The s.e.’s for

the estimates can be approximated using the approach in Louis (1982).
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Real Applications – Data set Two

Real Application Two

To model the bivariate count data properly, we did the same
treatment on the data as the one done in Bermúdez and Karlis
(2017), i.e. only selecting policyholders with full coverage (both
comprehensive and collision coverage, i.e. v9 = 0, v10 = 1). This
reduced the data to 28,590 policyholders.
The empirical distributions regarding Z1 (number of third-party
liability claims) and Z2 (number of other claims) of this subset are
given on next page.
For our study, we randomly take 70% of the observations from the
subset as training data to develop the models, and the remaining
30% are reserved as hold-out sample for validation purpose.
Regarding Wj , j = 1,2, in addition to the commonly used ZTP and
ZTNB distributions, we also tried unit-shifted Poisson (USP) and
unit-shifted negative binomial (USNB) distributions.
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Real Applications – Data set Two

The description for explanatory variables

Variable Description Mean

v1 = 1 for women; = 0 for men 0.160
v2 = 1 when driving in urban area; = 0 otherwise 0.669
v3 = 1 when zone is medium risk (Madrid and Catalonia) 0.239
v4 = 1 when zone is high risk (northern Spain) 0.194
v5 = 1 if the driving license is between 4 and 14 years old 0.257
v6 = 1 if the driving license is 15 or more years old 0.719
v7 = 1 if the client is in the company for more than 5 years 0.856
v8 = 1 if the insured is 30 years old or younger 0.092
v9 = 1 if includes comprehensive coverage (except fire) 0.156
v10 = 1 if includes comprehensive and collision coverage 0.353
v11 = 1 if horsepower is ≥ 5,500 cc 0.806
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Real Applications – Data set Two

Empirical distributions of Z1 and Z2

Z2

Z1 0 1 2 3 4 5 6 ≥ 0

0 24,408 1,916 296 69 12 6 0 26,707
1 1,068 317 61 21 6 2 2 1,477
2 203 71 18 6 2 1 1 302
3 49 14 8 3 3 1 0 78
4 11 6 2 0 1 0 0 20
5 2 0 0 0 0 0 1 3
6 1 0 0 1 0 0 0 2
8 0 0 1 0 0 0 0 1

≥ 0 25,742 2,324 386 100 24 10 4 28,590
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Real Applications – Data set Two

Goodness-of-fit of marginal models

W1 Observed ZTP ZTNB USP USNB

1 1,033 993.71 1,037.84 981.99 1,032.45
2 207 266.50 202.80 286.75 209.20
3 54 47.65 52.32 41.87 53.21
4 17 6.39 15.14 4.08 14.45
≥5 4 0.75 6.90 0.32 5.68

χ2 47.34 1.61 112.32 0.98
LogLik -924.59 -906.31 -940.51 -905.92

W2 Observed ZTP ZTNB USP USNB

1 1,624 1,562.13 1,612.94 1,548.65 1,623.88
2 265 358.21 281.18 382.08 265.14
3 66 54.76 64.72 47.13 66.48
4 18 6.28 16.70 3.88 18.61
≥5 9 0.62 6.46 0.25 7.89

χ2 163.54 2.13 403.05 0.18
LogLik -1,258.84 -1,221.06 -1,283.18 -1,220.22
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Real Applications – Data set Two

Model fitting results of πj in MZIH model with
covariates

π1 π2

Estimate t-ratio Estimate t-ratio

Intercept -0.953 -3.474*** -1.271 -4.786***
v1 0.029 0.327 0.041 0.496
v2 -0.044 -0.629 0.084 1.305
v3 0.098 1.227 0.168 2.336*
v4 0.274 3.230** -0.032 -0.397
v5 -0.188 -0.863 0.430 2.014*
v6 -0.336 -1.462 0.081 0.360
v7 -0.259 -3.022** -0.359 -4.517***
v8 0.107 0.873 0.060 0.527
v11 -0.086 -0.846 0.398 4.051***

Estimate 95% CI

π0 0.345 (0.318, 0.372)
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.
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Real Applications – Data set Two

Model fitting results of Wj in MZIH model with
covariates

W1 W2

Estimate t-ratio Estimate t-ratio

Intercept -1.299 -2.594** -1.350 -2.769**
v1 -0.112 -0.663 0.098 0.675
v2 -0.013 -0.096 0.001 0.009
v3 -0.079 -0.531 0.231 1.821
v4 -0.304 -1.884 -0.141 -0.896
v5 0.129 0.319 0.162 0.393
v6 0.141 0.333 0.039 0.092
v7 0.012 0.075 -0.037 -0.274
v8 -0.081 -0.366 -0.081 -0.415
v11 0.053 0.280 -0.178 -0.964

Estimate 95% CI

θ1 0.678 (0.428, 0.928)
θ2 0.498 (0.351, 0.644)

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.
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Real Applications – Data set Two

In-sample predictions

Z2

Z1 0 1 2 3 4 5 6

0 17,104 1,342 199 41 8 4 0
(17,102.66) (1,306.43) (213.31) (53.49) (14.97) (4.41) (1.34)

1 736 228 46 16 5 1 1
(731.96) (246.71) (40.28) (10.10) (2.83) (0.83) (0.25)

2 145 42 10 6 2 1 1
(148.32) (49.99) (8.16) (2.05) (0.57) (0.17) (0.05)

3 34 7 8 2 2 1 0
(37.73) (12.72) (2.08) (0.52) (0.15) (0.04) (0.01)

4 9 5 2 0 1 0 0
(10.25) (3.45) (0.56) (0.14) (0.04) (0.01) (0.00)

5 2 0 0 0 0 0 0
(2.87) (0.97) (0.16) (0.04) (0.01) (0.00) (0.00)

6 1 0 0 1 0 0 0
(0.82) (0.28) (0.05) (0.01) (0.00) (0.00) (0.00)
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Real Applications – Data set Two

Model comparison

We also fitted the MZIP and MZINB models. Furthermore, a
model with two independent hurdle margins (Ind) is fitted as a
benchmark.
For the zero-truncation parts in our MZIH model, only intercepts
are adopted to avoid the over-fitting problem.

Table: Information criteria of four fitted models

Model Parameters LogLik AIC BIC

MZIH 25 -13,162.50 26,375.00 26,581.52
MZINB 23 -13,195.20 26,436.40 26,626.39
MZIP 21 -13,313.94 26,669.88 26,843.36
Ind 24 -13,372.87 26,793.73 26,991.99
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Real Applications – Data set Two

Predictive Analysis

To evaluate the predictive performance, we calculate the predicted
claim frequencies and compare these to the observed ones based on
the out-of-sample for the following scenarios:
The candidate models include MZIH, MZIP, MZINB and Ind models.
Our observations are consistent with the in-sample predictions.

(Z1,Z2) Observed MZIH MZIP MZINB Ind

(0, 0) 7,304 7,332.54 7,330.50 7,330.93 7,224.20
(>0, 0) 407 399.46 403.20 411.71 506.12
(0, >0) 705 681.36 621.17 684.42 790.03

(>0, >0) 161 163.63 222.13 149.94 56.65

χ2 1.12 28.26 1.59 221.68
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Concluding remarks

Conclusions

Extra care needs to be taken on zero counts when modelling
multivariate insurance count data.

The proposed two multivariate zero-modified hurdle models are of
good use when multivariate count data display certain features in
joint zero counts.

The hurdle model structure on individual dimensions bring great
flexibilities that lead to better fitting results.

General multivariate zero-modified hurdle models can be
constructed by zero-inflating the MZTH models (working paper).
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